mscore/algorithm/
isotope.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
extern crate statrs;

use rayon::prelude::*;
use rayon::ThreadPoolBuilder;
use std::collections::{BTreeMap, HashMap, HashSet};

use crate::chemistry::constants::{MASS_NEUTRON, MASS_PROTON};
use crate::chemistry::elements::{atoms_isotopic_weights, isotopic_abundance};
use crate::data::peptide::PeptideIon;
use crate::data::spectrum::MzSpectrum;
use crate::data::spectrum::ToResolution;
use statrs::distribution::{Continuous, Normal};

/// convolve two distributions of masses and abundances
///
/// Arguments:
///
/// * `dist_a` - first distribution of masses and abundances
/// * `dist_b` - second distribution of masses and abundances
/// * `mass_tolerance` - mass tolerance for combining peaks
/// * `abundance_threshold` - minimum abundance for a peak to be included in the result
/// * `max_results` - maximum number of peaks to include in the result
///
/// Returns:
///
/// * `Vec<(f64, f64)>` - combined distribution of masses and abundances
///
/// # Examples
///
/// ```
/// use mscore::algorithm::isotope::convolve;
///
/// let dist_a = vec![(100.0, 0.5), (101.0, 0.5)];
/// let dist_b = vec![(100.0, 0.5), (101.0, 0.5)];
/// let result = convolve(&dist_a, &dist_b, 1e-6, 1e-12, 200);
/// assert_eq!(result, vec![(200.0, 0.25), (201.0, 0.5), (202.0, 0.25)]);
/// ```
pub fn convolve(
    dist_a: &Vec<(f64, f64)>,
    dist_b: &Vec<(f64, f64)>,
    mass_tolerance: f64,
    abundance_threshold: f64,
    max_results: usize,
) -> Vec<(f64, f64)> {
    let mut result: Vec<(f64, f64)> = Vec::new();

    for (mass_a, abundance_a) in dist_a {
        for (mass_b, abundance_b) in dist_b {
            let combined_mass = mass_a + mass_b;
            let combined_abundance = abundance_a * abundance_b;

            // Skip entries with combined abundance below the threshold
            if combined_abundance < abundance_threshold {
                continue;
            }

            // Insert or update the combined mass in the result distribution
            if let Some(entry) = result
                .iter_mut()
                .find(|(m, _)| (*m - combined_mass).abs() < mass_tolerance)
            {
                entry.1 += combined_abundance;
            } else {
                result.push((combined_mass, combined_abundance));
            }
        }
    }

    // Sort by abundance (descending) to prepare for trimming
    result.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());

    // Trim the vector if it exceeds max_results
    if result.len() > max_results {
        result.truncate(max_results);
    }

    // Optionally, sort by mass if needed for further processing
    result.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap());

    result
}

/// convolve a distribution with itself n times
///
/// Arguments:
///
/// * `dist` - distribution of masses and abundances
/// * `n` - number of times to convolve the distribution with itself
///
/// Returns:
///
/// * `Vec<(f64, f64)>` - distribution of masses and abundances
///
/// # Examples
///
/// ```
/// use mscore::algorithm::isotope::convolve_pow;
///
/// let dist = vec![(100.0, 0.5), (101.0, 0.5)];
/// let result = convolve_pow(&dist, 2);
/// assert_eq!(result, vec![(200.0, 0.25), (201.0, 0.5), (202.0, 0.25)]);
/// ```
pub fn convolve_pow(dist: &Vec<(f64, f64)>, n: i32) -> Vec<(f64, f64)> {
    if n == 0 {
        return vec![(0.0, 1.0)]; // Return the delta distribution
    }
    if n == 1 {
        return dist.clone();
    }

    let mut result = dist.clone();
    let mut power = 2;

    while power <= n {
        result = convolve(&result, &result, 1e-6, 1e-12, 200); // Square the result to get the next power of 2
        power *= 2;
    }

    // If n is not a power of 2, recursively fill in the remainder
    if power / 2 < n {
        result = convolve(
            &result,
            &convolve_pow(dist, n - power / 2),
            1e-6,
            1e-12,
            200,
        );
    }

    result
}

/// generate the isotope distribution for a given atomic composition
///
/// Arguments:
///
/// * `atomic_composition` - atomic composition of the peptide
/// * `mass_tolerance` - mass tolerance for combining peaks
/// * `abundance_threshold` - minimum abundance for a peak to be included in the result
/// * `max_result` - maximum number of peaks to include in the result
///
/// Returns:
///
/// * `Vec<(f64, f64)>` - distribution of masses and abundances
///
/// # Examples
///
/// ```
/// use std::collections::HashMap;
/// use mscore::algorithm::isotope::generate_isotope_distribution;
///
/// let mut atomic_composition = HashMap::new();
/// atomic_composition.insert("C".to_string(), 5);
/// atomic_composition.insert("H".to_string(), 9);
/// atomic_composition.insert("N".to_string(), 1);
/// atomic_composition.insert("O".to_string(), 1);
/// let result = generate_isotope_distribution(&atomic_composition, 1e-6, 1e-12, 200);
/// ```
pub fn generate_isotope_distribution(
    atomic_composition: &HashMap<String, i32>,
    mass_tolerance: f64,
    abundance_threshold: f64,
    max_result: i32,
) -> Vec<(f64, f64)> {
    let mut cumulative_distribution: Option<Vec<(f64, f64)>> = None;
    let atoms_isotopic_weights: HashMap<String, Vec<f64>> = atoms_isotopic_weights()
        .iter()
        .map(|(k, v)| (k.to_string(), v.clone()))
        .collect();
    let atomic_isotope_abundance: HashMap<String, Vec<f64>> = isotopic_abundance()
        .iter()
        .map(|(k, v)| (k.to_string(), v.clone()))
        .collect();

    for (element, &count) in atomic_composition.iter() {
        let elemental_isotope_weights = atoms_isotopic_weights
            .get(element)
            .expect("Element not found in isotopic weights table")
            .clone();
        let elemental_isotope_abundance = atomic_isotope_abundance
            .get(element)
            .expect("Element not found in isotopic abundance table")
            .clone();

        let element_distribution: Vec<(f64, f64)> = elemental_isotope_weights
            .iter()
            .zip(elemental_isotope_abundance.iter())
            .map(|(&mass, &abundance)| (mass, abundance))
            .collect();

        let element_power_distribution = if count > 1 {
            convolve_pow(&element_distribution, count)
        } else {
            element_distribution
        };

        cumulative_distribution = match cumulative_distribution {
            Some(cum_dist) => Some(convolve(
                &cum_dist,
                &element_power_distribution,
                mass_tolerance,
                abundance_threshold,
                max_result as usize,
            )),
            None => Some(element_power_distribution),
        };
    }

    let final_distribution = cumulative_distribution.expect("Peptide has no elements");
    // Normalize the distribution
    let total_abundance: f64 = final_distribution
        .iter()
        .map(|&(_, abundance)| abundance)
        .sum();
    let result: Vec<_> = final_distribution
        .into_iter()
        .map(|(mass, abundance)| (mass, abundance / total_abundance))
        .collect();

    let mut sort_map: BTreeMap<i64, f64> = BTreeMap::new();
    let quantize = |mz: f64| -> i64 { (mz * 1_000_000.0).round() as i64 };

    for (mz, intensity) in result {
        let key = quantize(mz);
        sort_map
            .entry(key)
            .and_modify(|e| *e += intensity)
            .or_insert(intensity);
    }

    let mz: Vec<f64> = sort_map
        .keys()
        .map(|&key| key as f64 / 1_000_000.0)
        .collect();
    let intensity: Vec<f64> = sort_map.values().map(|&intensity| intensity).collect();
    mz.iter()
        .zip(intensity.iter())
        .map(|(&mz, &intensity)| (mz, intensity))
        .collect()
}

/// calculate the normal probability density function
///
/// Arguments:
///
/// * `x` - value to calculate the probability density function of
/// * `mean` - mean of the normal distribution
/// * `std_dev` - standard deviation of the normal distribution
///
/// Returns:
///
/// * `f64` - probability density function of `x`
///
/// # Examples
///
/// ```
/// use mscore::algorithm::isotope::normal_pdf;
///
/// let pdf = normal_pdf(0.0, 0.0, 1.0);
/// assert_eq!(pdf, 0.39894228040143265);
/// ```
pub fn normal_pdf(x: f64, mean: f64, std_dev: f64) -> f64 {
    let normal = Normal::new(mean, std_dev).unwrap();
    normal.pdf(x)
}

/// calculate the factorial of a number
///
/// Arguments:
///
/// * `n` - number to calculate factorial of
///
/// Returns:
///
/// * `f64` - factorial of `n`
///
/// # Examples
///
/// ```
/// use mscore::algorithm::isotope::factorial;
///
/// let fact = factorial(5);
/// assert_eq!(fact, 120.0);
/// ```
pub fn factorial(n: i32) -> f64 {
    (1..=n).fold(1.0, |acc, x| acc * x as f64)
}

pub fn weight(mass: f64, peak_nums: Vec<i32>, normalize: bool) -> Vec<f64> {
    let lam_val = lam(mass, 0.000594, -0.03091);
    let factorials: Vec<f64> = peak_nums.iter().map(|&k| factorial(k)).collect();
    let mut weights: Vec<f64> = peak_nums
        .iter()
        .map(|&k| {
            let pow = lam_val.powi(k);
            let exp = (-lam_val).exp();
            exp * pow / factorials[k as usize]
        })
        .collect();

    if normalize {
        let sum: f64 = weights.iter().sum();
        weights = weights.iter().map(|&w| w / sum).collect();
    }

    weights
}

/// calculate the lambda value for a given mass
///
/// Arguments:
///
/// * `mass` - mass of the peptide
/// * `slope` - slope of the linear regression
/// * `intercept` - intercept of the linear regression
///
/// Returns:
///
/// * `f64` - lambda value
///
/// # Examples
///
/// ```
/// use mscore::algorithm::isotope::lam;
///
/// let lambda = lam(1000.0, 0.000594, -0.03091);
/// assert_eq!(lambda, 0.56309);
pub fn lam(mass: f64, slope: f64, intercept: f64) -> f64 {
    slope * mass + intercept
}

/// calculate the isotope pattern for a given mass and charge based on the averagine model
/// using the normal distribution for peak shapes
///
/// Arguments:
///
/// * `x` - list of m/z values to probe
/// * `mass` - mass of the peptide
/// * `charge` - charge of the peptide
/// * `sigma` - standard deviation of the normal distribution
/// * `amp` - amplitude of the isotope pattern
/// * `k` - number of isotopes to consider
/// * `step_size` - step size for the m/z values to probe
///
/// Returns:
///
/// * `Vec<f64>` - isotope pattern
///
pub fn iso(
    x: &Vec<f64>,
    mass: f64,
    charge: f64,
    sigma: f64,
    amp: f64,
    k: usize,
    step_size: f64,
) -> Vec<f64> {
    let k_range: Vec<usize> = (0..k).collect();
    let means: Vec<f64> = k_range
        .iter()
        .map(|&k_val| (mass + MASS_NEUTRON * k_val as f64) / charge)
        .collect();
    let weights = weight(
        mass,
        k_range
            .iter()
            .map(|&k_val| k_val as i32)
            .collect::<Vec<i32>>(),
        true,
    );

    let mut intensities = vec![0.0; x.len()];
    for (i, x_val) in x.iter().enumerate() {
        for (j, &mean) in means.iter().enumerate() {
            intensities[i] += weights[j] * normal_pdf(*x_val, mean, sigma);
        }
        intensities[i] *= step_size;
    }
    intensities
        .iter()
        .map(|&intensity| intensity * amp)
        .collect()
}

/// generate the isotope pattern for a given mass and charge
///
/// Arguments:
///
/// * `lower_bound` - lower bound of the isotope pattern
/// * `upper_bound` - upper bound of the isotope pattern
/// * `mass` - mass of the peptide
/// * `charge` - charge of the peptide
/// * `amp` - amplitude of the isotope pattern
/// * `k` - number of isotopes to consider
/// * `sigma` - standard deviation of the normal distribution
/// * `resolution` - resolution of the isotope pattern
///
/// Returns:
///
/// * `(Vec<f64>, Vec<f64>)` - isotope pattern
///
/// # Examples
///
/// ```
/// use mscore::algorithm::isotope::generate_isotope_pattern;
///
/// let (mzs, intensities) = generate_isotope_pattern(1500.0, 1510.0, 3000.0, 2.0, 1e4, 10, 1.0, 3);
/// ```
pub fn generate_isotope_pattern(
    lower_bound: f64,
    upper_bound: f64,
    mass: f64,
    charge: f64,
    amp: f64,
    k: usize,
    sigma: f64,
    resolution: i32,
) -> (Vec<f64>, Vec<f64>) {
    let step_size = f64::min(sigma / 10.0, 1.0 / 10f64.powi(resolution));
    let size = ((upper_bound - lower_bound) / step_size).ceil() as usize;
    let mzs: Vec<f64> = (0..size)
        .map(|i| lower_bound + step_size * i as f64)
        .collect();
    let intensities = iso(&mzs, mass, charge, sigma, amp, k, step_size);

    (
        mzs.iter().map(|&mz| mz + MASS_PROTON).collect(),
        intensities,
    )
}

/// generate the averagine spectrum for a given mass and charge
///
/// Arguments:
///
/// * `mass` - mass of the peptide
/// * `charge` - charge of the peptide
/// * `min_intensity` - minimum intensity for a peak to be included in the result
/// * `k` - number of isotopes to consider
/// * `resolution` - resolution of the isotope pattern
/// * `centroid` - whether to centroid the spectrum
/// * `amp` - amplitude of the isotope pattern
///
/// Returns:
///
/// * `MzSpectrum` - averagine spectrum
///
/// # Examples
///
/// ```
/// use mscore::algorithm::isotope::generate_averagine_spectrum;
///
/// let spectrum = generate_averagine_spectrum(3000.0, 2, 1, 10, 3, true, None);
/// ```
pub fn generate_averagine_spectrum(
    mass: f64,
    charge: i32,
    min_intensity: i32,
    k: i32,
    resolution: i32,
    centroid: bool,
    amp: Option<f64>,
) -> MzSpectrum {
    let amp = amp.unwrap_or(1e4);
    let lb = mass / charge as f64 - 0.2;
    let ub = mass / charge as f64 + k as f64 + 0.2;

    let (mz, intensities) = generate_isotope_pattern(
        lb,
        ub,
        mass,
        charge as f64,
        amp,
        k as usize,
        0.008492569002123142,
        resolution,
    );

    let spectrum = MzSpectrum::new(mz, intensities)
        .to_resolution(resolution)
        .filter_ranged(lb, ub, min_intensity as f64, 1e9);

    if centroid {
        spectrum.to_centroid(
            std::cmp::max(min_intensity, 1),
            1.0 / 10f64.powi(resolution - 1),
            true,
        )
    } else {
        spectrum
    }
}

/// generate the averagine spectra for a given list of masses and charges
/// using multiple threads
///
/// Arguments:
///
/// * `masses` - list of masses of the peptides
/// * `charges` - list of charges of the peptides
/// * `min_intensity` - minimum intensity for a peak to be included in the result
/// * `k` - number of isotopes to consider
/// * `resolution` - resolution of the isotope pattern
/// * `centroid` - whether to centroid the spectrum
/// * `num_threads` - number of threads to use
/// * `amp` - amplitude of the isotope pattern
///
/// Returns:
///
/// * `Vec<MzSpectrum>` - list of averagine spectra
///
/// # Examples
///
/// ```
/// use mscore::algorithm::isotope::generate_averagine_spectra;
///
/// let masses = vec![3000.0, 3000.0];
/// let charges = vec![2, 3];
/// let spectra = generate_averagine_spectra(masses, charges, 1, 10, 3, true, 4, None);
/// ```
pub fn generate_averagine_spectra(
    masses: Vec<f64>,
    charges: Vec<i32>,
    min_intensity: i32,
    k: i32,
    resolution: i32,
    centroid: bool,
    num_threads: usize,
    amp: Option<f64>,
) -> Vec<MzSpectrum> {
    let amp = amp.unwrap_or(1e5);
    let mut spectra: Vec<MzSpectrum> = Vec::new();
    let thread_pool = ThreadPoolBuilder::new()
        .num_threads(num_threads)
        .build()
        .unwrap();

    thread_pool.install(|| {
        spectra = masses
            .par_iter()
            .zip(charges.par_iter())
            .map(|(&mass, &charge)| {
                generate_averagine_spectrum(
                    mass,
                    charge,
                    min_intensity,
                    k,
                    resolution,
                    centroid,
                    Some(amp),
                )
            })
            .collect();
    });

    spectra
}

/// generate the precursor spectrum for a given peptide sequence and charge
/// using isotope convolutions
///
/// Arguments:
///
/// * `sequence` - peptide sequence
/// * `charge` - charge of the peptide
///
/// Returns:
///
/// * `MzSpectrum` - precursor spectrum
///
pub fn generate_precursor_spectrum(
    sequence: &str,
    charge: i32,
    peptide_id: Option<i32>,
) -> MzSpectrum {
    let peptide_ion = PeptideIon::new(sequence.to_string(), charge, 1.0, peptide_id);
    peptide_ion.calculate_isotopic_spectrum(1e-3, 1e-9, 200, 1e-6)
}

/// parallel version of `generate_precursor_spectrum`
///
/// Arguments:
///
/// * `sequences` - list of peptide sequences
/// * `charges` - list of charges of the peptides
/// * `num_threads` - number of threads to use
///
/// Returns:
///
/// * `Vec<MzSpectrum>` - list of precursor spectra
///
pub fn generate_precursor_spectra(
    sequences: &Vec<&str>,
    charges: &Vec<i32>,
    num_threads: usize,
    peptide_ids: Vec<Option<i32>>,
) -> Vec<MzSpectrum> {
    let thread_pool = ThreadPoolBuilder::new()
        .num_threads(num_threads)
        .build()
        .unwrap();
    // need to zip sequences and charges and peptide_ids
    let result = thread_pool.install(|| {
        sequences
            .par_iter()
            .zip(charges.par_iter())
            .zip(peptide_ids.par_iter())
            .map(|((&sequence, &charge), &peptide_id)| {
                generate_precursor_spectrum(sequence, charge, peptide_id)
            })
            .collect()
    });
    result
}

// Calculates the isotope distribution for a fragment given the isotope distribution of the fragment, the isotope distribution of the complementary fragment, and the transmitted precursor isotopes
// implemented based on OpenMS: "https://github.com/OpenMS/OpenMS/blob/079143800f7ed036a7c68ea6e124fe4f5cfc9569/src/openms/source/CHEMISTRY/ISOTOPEDISTRIBUTION/CoarseIsotopePatternGenerator.cpp#L415"
pub fn calculate_transmission_dependent_fragment_ion_isotope_distribution(
    fragment_isotope_dist: &Vec<(f64, f64)>,
    comp_fragment_isotope_dist: &Vec<(f64, f64)>,
    precursor_isotopes: &HashSet<usize>,
    max_isotope: usize,
) -> Vec<(f64, f64)> {
    if fragment_isotope_dist.is_empty() || comp_fragment_isotope_dist.is_empty() {
        return Vec::new();
    }

    let mut r_max = fragment_isotope_dist.len();
    if max_isotope != 0 && r_max > max_isotope {
        r_max = max_isotope;
    }

    let mut result = (0..r_max)
        .map(|i| (fragment_isotope_dist[0].0 + i as f64, 0.0))
        .collect::<Vec<(f64, f64)>>();

    // Calculation of dependent isotope distribution
    for (i, &(_mz, intensity)) in fragment_isotope_dist.iter().enumerate().take(r_max) {
        for &precursor in precursor_isotopes {
            if precursor >= i && (precursor - i) < comp_fragment_isotope_dist.len() {
                let comp_intensity = comp_fragment_isotope_dist[precursor - i].1;
                result[i].1 += comp_intensity;
            }
        }
        result[i].1 *= intensity;
    }

    result
}