mscore/algorithm/
peptide.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
use crate::chemistry::amino_acid::{amino_acid_composition, amino_acid_masses};
use crate::chemistry::constants::{MASS_CO, MASS_NH3, MASS_PROTON, MASS_WATER};
use crate::chemistry::formulas::calculate_mz;
use crate::chemistry::unimod::{
    modification_atomic_composition, unimod_modifications_mass_numerical,
};
use crate::chemistry::utility::{find_unimod_patterns, unimod_sequence_to_tokens};
use crate::data::peptide::{FragmentType, PeptideProductIon, PeptideSequence};
use rayon::prelude::*;
use rayon::ThreadPoolBuilder;
use regex::Regex;
use statrs::distribution::{Binomial, Discrete};
use std::collections::HashMap;

/// calculate the monoisotopic mass of a peptide sequence
///
/// Arguments:
///
/// * `sequence` - peptide sequence
///
/// Returns:
///
/// * `mass` - monoisotopic mass of the peptide
///
/// # Examples
///
/// ```
/// use mscore::algorithm::peptide::calculate_peptide_mono_isotopic_mass;
/// use mscore::data::peptide::PeptideSequence;
///
/// let peptide_sequence = PeptideSequence::new("PEPTIDEH".to_string(), Some(1));
/// let mass = calculate_peptide_mono_isotopic_mass(&peptide_sequence);
/// let mass_quantized = (mass * 1e6).round() as i32;
/// assert_eq!(mass_quantized, 936418877);
/// ```
pub fn calculate_peptide_mono_isotopic_mass(peptide_sequence: &PeptideSequence) -> f64 {
    let amino_acid_masses = amino_acid_masses();
    let modifications_mz_numerical = unimod_modifications_mass_numerical();
    let pattern = Regex::new(r"\[UNIMOD:(\d+)]").unwrap();

    let sequence = peptide_sequence.sequence.as_str();

    // Find all occurrences of the pattern
    let modifications: Vec<u32> = pattern
        .find_iter(sequence)
        .filter_map(|mat| mat.as_str()[8..mat.as_str().len() - 1].parse().ok())
        .collect();

    // Remove the modifications from the sequence
    let sequence = pattern.replace_all(sequence, "");

    // Count occurrences of each amino acid
    let mut aa_counts = HashMap::new();
    for char in sequence.chars() {
        *aa_counts.entry(char).or_insert(0) += 1;
    }

    // Mass of amino acids and modifications
    let mass_sequence: f64 = aa_counts
        .iter()
        .map(|(aa, &count)| {
            amino_acid_masses.get(&aa.to_string()[..]).unwrap_or(&0.0) * count as f64
        })
        .sum();
    let mass_modifications: f64 = modifications
        .iter()
        .map(|&mod_id| modifications_mz_numerical.get(&mod_id).unwrap_or(&0.0))
        .sum();

    mass_sequence + mass_modifications + MASS_WATER
}

/// calculate the monoisotopic mass of a peptide product ion for a given fragment type
///
/// Arguments:
///
/// * `sequence` - peptide sequence
/// * `kind` - fragment type
///
/// Returns:
///
/// * `mass` - monoisotopic mass of the peptide
///
/// # Examples
/// ```
/// use mscore::algorithm::peptide::calculate_peptide_product_ion_mono_isotopic_mass;
/// use mscore::data::peptide::FragmentType;
/// let sequence = "PEPTIDEH";
/// let mass = calculate_peptide_product_ion_mono_isotopic_mass(sequence, FragmentType::Y);
/// assert_eq!(mass, 936.4188766862999);
/// ```
pub fn calculate_peptide_product_ion_mono_isotopic_mass(sequence: &str, kind: FragmentType) -> f64 {
    let (sequence, modifications) = find_unimod_patterns(sequence);

    // Return mz of empty sequence
    if sequence.is_empty() {
        return 0.0;
    }

    let amino_acid_masses = amino_acid_masses();

    // Add up raw amino acid masses and potential modifications
    let mass_sequence: f64 = sequence
        .chars()
        .map(|aa| amino_acid_masses.get(&aa.to_string()[..]).unwrap_or(&0.0))
        .sum();

    let mass_modifications: f64 = modifications.iter().sum();

    // Calculate total mass
    let mass = mass_sequence + mass_modifications + MASS_WATER;

    let mass = match kind {
        FragmentType::A => mass - MASS_CO - MASS_WATER,
        FragmentType::B => mass - MASS_WATER,
        FragmentType::C => mass + MASS_NH3 - MASS_WATER,
        FragmentType::X => mass + MASS_CO - 2.0 * MASS_PROTON,
        FragmentType::Y => mass,
        FragmentType::Z => mass - MASS_NH3,
    };

    mass
}

/// calculate the monoisotopic m/z of a peptide product ion for a given fragment type and charge
///
/// Arguments:
///
/// * `sequence` - peptide sequence
/// * `kind` - fragment type
/// * `charge` - charge
///
/// Returns:
///
/// * `mz` - monoisotopic mass of the peptide
///
/// # Examples
/// ```
/// use mscore::algorithm::peptide::calculate_product_ion_mz;
/// use mscore::chemistry::constants::MASS_PROTON;
/// use mscore::data::peptide::FragmentType;
/// let sequence = "PEPTIDEH";
/// let mz = calculate_product_ion_mz(sequence, FragmentType::Y, Some(1));
/// assert_eq!(mz, 936.4188766862999 + MASS_PROTON);
/// ```
pub fn calculate_product_ion_mz(sequence: &str, kind: FragmentType, charge: Option<i32>) -> f64 {
    let mass = calculate_peptide_product_ion_mono_isotopic_mass(sequence, kind);
    calculate_mz(mass, charge.unwrap_or(1))
}

/// get a count dictionary of the amino acid composition of a peptide sequence
///
/// Arguments:
///
/// * `sequence` - peptide sequence
///
/// Returns:
///
/// * `composition` - a dictionary of amino acid composition
///
/// # Examples
///
/// ```
/// use mscore::algorithm::peptide::calculate_amino_acid_composition;
///
/// let sequence = "PEPTIDEH";
/// let composition = calculate_amino_acid_composition(sequence);
/// assert_eq!(composition.get("P"), Some(&2));
/// assert_eq!(composition.get("E"), Some(&2));
/// assert_eq!(composition.get("T"), Some(&1));
/// assert_eq!(composition.get("I"), Some(&1));
/// assert_eq!(composition.get("D"), Some(&1));
/// assert_eq!(composition.get("H"), Some(&1));
/// ```
pub fn calculate_amino_acid_composition(sequence: &str) -> HashMap<String, i32> {
    let mut composition = HashMap::new();
    for char in sequence.chars() {
        *composition.entry(char.to_string()).or_insert(0) += 1;
    }
    composition
}

/// calculate the atomic composition of a peptide sequence
pub fn peptide_sequence_to_atomic_composition(
    peptide_sequence: &PeptideSequence,
) -> HashMap<&'static str, i32> {
    let token_sequence = unimod_sequence_to_tokens(peptide_sequence.sequence.as_str(), false);
    let mut collection: HashMap<&'static str, i32> = HashMap::new();

    // Assuming amino_acid_composition and modification_composition return appropriate mappings...
    let aa_compositions = amino_acid_composition();
    let mod_compositions = modification_atomic_composition();

    // No need for conversion to HashMap<String, ...> as long as you're directly accessing
    // the HashMap provided by modification_composition() if it uses String keys.
    for token in token_sequence {
        if token.len() == 1 {
            let char = token.chars().next().unwrap();
            if let Some(composition) = aa_compositions.get(&char) {
                for (key, value) in composition.iter() {
                    *collection.entry(key).or_insert(0) += *value;
                }
            }
        } else {
            // Directly use &token without .as_str() conversion
            if let Some(composition) = mod_compositions.get(&token) {
                for (key, value) in composition.iter() {
                    *collection.entry(key).or_insert(0) += *value;
                }
            }
        }
    }

    // Add water
    *collection.entry("H").or_insert(0) += 2; //
    *collection.entry("O").or_insert(0) += 1; //

    collection
}

/// calculate the atomic composition of a product ion
///
/// Arguments:
///
/// * `product_ion` - a PeptideProductIon instance
///
/// Returns:
///
/// * `Vec<(&str, i32)>` - a vector of tuples representing the atomic composition of the product ion
pub fn atomic_product_ion_composition(product_ion: &PeptideProductIon) -> Vec<(&str, i32)> {
    let mut composition = peptide_sequence_to_atomic_composition(&product_ion.ion.sequence);

    match product_ion.kind {
        FragmentType::A => {
            // A: peptide_mass - CO - Water
            *composition.entry("H").or_insert(0) -= 2;
            *composition.entry("O").or_insert(0) -= 2;
            *composition.entry("C").or_insert(0) -= 1;
        }
        FragmentType::B => {
            // B: peptide_mass - Water
            *composition.entry("H").or_insert(0) -= 2;
            *composition.entry("O").or_insert(0) -= 1;
        }
        FragmentType::C => {
            // C: peptide_mass + NH3 - Water
            *composition.entry("H").or_insert(0) += 1;
            *composition.entry("N").or_insert(0) += 1;
            *composition.entry("O").or_insert(0) -= 1;
        }
        FragmentType::X => {
            // X: peptide_mass + CO
            *composition.entry("C").or_insert(0) += 1; // Add 1 for CO
            *composition.entry("O").or_insert(0) += 1; // Add 1 for CO
            *composition.entry("H").or_insert(0) -= 2; // Subtract 2 for 2 protons
        }
        FragmentType::Y => (),
        FragmentType::Z => {
            *composition.entry("H").or_insert(0) -= 3;
            *composition.entry("N").or_insert(0) -= 1;
        }
    }

    composition.iter().map(|(k, v)| (*k, *v)).collect()
}

/// calculate the atomic composition of a peptide product ion series
/// Arguments:
///
/// * `product_ions` - a vector of PeptideProductIon instances
/// * `num_threads` - an usize representing the number of threads to use
/// Returns:
///
/// * `Vec<Vec<(String, i32)>>` - a vector of vectors of tuples representing the atomic composition of each product ion
///
pub fn fragments_to_composition(
    product_ions: Vec<PeptideProductIon>,
    num_threads: usize,
) -> Vec<Vec<(String, i32)>> {
    let thread_pool = ThreadPoolBuilder::new()
        .num_threads(num_threads)
        .build()
        .unwrap();
    let result = thread_pool.install(|| {
        product_ions
            .par_iter()
            .map(|ion| atomic_product_ion_composition(ion))
            .map(|composition| {
                composition
                    .iter()
                    .map(|(k, v)| (k.to_string(), *v))
                    .collect()
            })
            .collect()
    });
    result
}

/// count the number of protonizable sites in a peptide sequence
///
/// # Arguments
///
/// * `sequence` - a string representing the peptide sequence
///
/// # Returns
///
/// * `usize` - the number of protonizable sites in the peptide sequence
///
/// # Example
///
/// ```
/// use mscore::algorithm::peptide::get_num_protonizable_sites;
///
/// let sequence = "PEPTIDEH";
/// let num_protonizable_sites = get_num_protonizable_sites(sequence);
/// assert_eq!(num_protonizable_sites, 2);
/// ```
pub fn get_num_protonizable_sites(sequence: &str) -> usize {
    let mut sites = 1; // n-terminus
    for s in sequence.chars() {
        match s {
            'H' | 'R' | 'K' => sites += 1,
            _ => {}
        }
    }
    sites
}

/// simulate the charge state distribution for a peptide sequence
///
/// # Arguments
///
/// * `sequence` - a string representing the peptide sequence
/// * `max_charge` - an optional usize representing the maximum charge state to simulate
/// * `charged_probability` - an optional f64 representing the probability of a site being charged
///
/// # Returns
///
/// * `Vec<f64>` - a vector of f64 representing the probability of each charge state
///
/// # Example
///
/// ```
/// use mscore::algorithm::peptide::simulate_charge_state_for_sequence;
///
/// let sequence = "PEPTIDEH";
/// let charge_state_probs = simulate_charge_state_for_sequence(sequence, None, None);
/// assert_eq!(charge_state_probs, vec![0.25, 0.5, 0.25, 0.0, 0.0]);
pub fn simulate_charge_state_for_sequence(
    sequence: &str,
    max_charge: Option<usize>,
    charged_probability: Option<f64>,
) -> Vec<f64> {
    let charged_prob = charged_probability.unwrap_or(0.5);
    let max_charge = max_charge.unwrap_or(5);
    let num_protonizable_sites = get_num_protonizable_sites(sequence);
    let mut charge_state_probs = vec![0.0; max_charge];

    for charge in 0..max_charge {
        let binom = Binomial::new(charged_prob, num_protonizable_sites as u64).unwrap();
        let prob = binom.pmf(charge as u64);

        charge_state_probs[charge] = prob;
    }

    charge_state_probs
}

/// simulate the charge state distribution for a list of peptide sequences
///
/// # Arguments
///
/// * `sequences` - a vector of strings representing the peptide sequences
/// * `num_threads` - an usize representing the number of threads to use
/// * `max_charge` - an optional usize representing the maximum charge state to simulate
/// * `charged_probability` - an optional f64 representing the probability of a site being charged
///
/// # Returns
///
/// * `Vec<Vec<f64>>` - a vector of vectors of f64 representing the probability of each charge state for each sequence
///
/// # Example
///
/// ```
/// use mscore::algorithm::peptide::simulate_charge_states_for_sequences;
///
/// let sequences = vec!["PEPTIDEH", "PEPTIDEH", "PEPTIDEH"];
/// let charge_state_probs = simulate_charge_states_for_sequences(sequences, 4, None, None);
/// assert_eq!(charge_state_probs, vec![vec![0.25, 0.5, 0.25, 0.0, 0.0], vec![0.25, 0.5, 0.25, 0.0, 0.0], vec![0.25, 0.5, 0.25, 0.0, 0.0]]);
/// ```
pub fn simulate_charge_states_for_sequences(
    sequences: Vec<&str>,
    num_threads: usize,
    max_charge: Option<usize>,
    charged_probability: Option<f64>,
) -> Vec<Vec<f64>> {
    let pool = ThreadPoolBuilder::new()
        .num_threads(num_threads)
        .build()
        .unwrap();
    pool.install(|| {
        sequences
            .par_iter()
            .map(|sequence| {
                simulate_charge_state_for_sequence(sequence, max_charge, charged_probability)
            })
            .collect()
    })
}