mscore/algorithm/
utility.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
use std::collections::HashMap;
use std::f64::consts::SQRT_2;
use rayon::prelude::*;
use rayon::ThreadPoolBuilder;

use std::collections::VecDeque;

fn gauss_kronrod(f: &dyn Fn(f64) -> f64, a: f64, b: f64) -> (f64, f64) {
    let nodes = [
        0.0, 0.20778495500789848, 0.40584515137739717, 0.58608723546769113,
        0.74153118559939444, 0.86486442335976907, 0.94910791234275852, 0.99145537112081264,
    ];
    let weights_gauss = [
        0.41795918367346939, 0.38183005050511894, 0.27970539148927667, 0.12948496616886969,
    ];
    let weights_kronrod = [
        0.20948214108472783, 0.20443294007529889, 0.19035057806478541, 0.16900472663926790,
        0.14065325971552592, 0.10479001032225018, 0.06309209262997855, 0.02293532201052922,
    ];

    let c1 = (b - a) / 2.0;
    let c2 = (b + a) / 2.0;

    let mut integral_gauss = 0.0;
    let mut integral_kronrod = 0.0;

    for i in 0..4 {
        let x = c1 * nodes[i] + c2;
        integral_gauss += weights_gauss[i] * (f(x) + f(2.0 * c2 - x));
    }

    for i in 0..8 {
        let x = c1 * nodes[i] + c2;
        integral_kronrod += weights_kronrod[i] * (f(x) + f(2.0 * c2 - x));
    }

    integral_gauss *= c1;
    integral_kronrod *= c1;

    (integral_kronrod, (integral_kronrod - integral_gauss).abs())
}

pub fn adaptive_integration(f: &dyn Fn(f64) -> f64, a: f64, b: f64, epsabs: f64, epsrel: f64) -> (f64, f64) {
    let mut intervals = VecDeque::new();
    intervals.push_back((a, b));

    let mut result = 0.0;
    let mut total_error = 0.0;

    while let Some((a, b)) = intervals.pop_front() {
        let (integral, error) = gauss_kronrod(f, a, b);
        if error < epsabs || error < epsrel * integral.abs() {
            result += integral;
            total_error += error;
        } else {
            let mid = (a + b) / 2.0;
            intervals.push_back((a, mid));
            intervals.push_back((mid, b));
        }
    }

    (result, total_error)
}




// Numerical integration using the trapezoidal rule
fn integrate<F>(f: F, a: f64, b: f64, n: usize) -> f64
    where
        F: Fn(f64) -> f64,
{
    let dx = (b - a) / n as f64;
    let mut sum = 0.0;
    for i in 0..n {
        let x = a + i as f64 * dx;
        sum += f(x);
    }
    sum * dx
}

// Complementary error function (erfc)
fn erfc(x: f64) -> f64 {
    1.0 - erf(x)
}

// Error function (erf)
fn erf(x: f64) -> f64 {
    let t = 1.0 / (1.0 + 0.5 * x.abs());
    let tau = t * (-x * x - 1.26551223 + t * (1.00002368 +
        t * (0.37409196 + t * (0.09678418 + t * (-0.18628806 +
            t * (0.27886807 + t * (-1.13520398 + t * (1.48851587 +
                t * (-0.82215223 + t * 0.17087277)))))))))
        .exp();
    if x >= 0.0 {
        1.0 - tau
    } else {
        tau - 1.0
    }
}

// Exponentially modified Gaussian function
fn emg(x: f64, mu: f64, sigma: f64, lambda: f64) -> f64 {
    let part1 = lambda / 2.0 * (-lambda * (x - mu) + lambda * lambda * sigma * sigma / 2.0).exp();
    let part2 = erfc((mu + lambda * sigma * sigma - x) / (sigma * 2.0_f64.sqrt()));
    part1 * part2
}

pub fn custom_cdf_normal(x: f64, mean: f64, std_dev: f64) -> f64 {
    let z = (x - mean) / std_dev;
    0.5 * (1.0 + erf(z / SQRT_2))
}

pub fn accumulated_intensity_cdf_normal(sample_start: f64, sample_end: f64, mean: f64, std_dev: f64) -> f64 {
    let cdf_start = custom_cdf_normal(sample_start, mean, std_dev);
    let cdf_end = custom_cdf_normal(sample_end, mean, std_dev);
    cdf_end - cdf_start
}

pub fn calculate_bounds_normal(mean: f64, std: f64, z_score: f64) -> (f64, f64) {
    (mean - z_score * std, mean + z_score * std)
}

pub fn emg_function(x: f64, mu: f64, sigma: f64, lambda: f64) -> f64 {
    let prefactor = lambda / 2.0 * ((lambda / 2.0) * (2.0 * mu + lambda * sigma.powi(2) - 2.0 * x)).exp();
    let erfc_part = erfc((mu + lambda * sigma.powi(2) - x) / (SQRT_2 * sigma));
    prefactor * erfc_part
}

pub fn emg_cdf_range(lower_limit: f64, upper_limit: f64, mu: f64, sigma: f64, lambda: f64, n_steps: Option<usize>) -> f64 {
    let n_steps = n_steps.unwrap_or(1000);
    integrate(|x| emg(x, mu, sigma, lambda), lower_limit, upper_limit, n_steps)
}

pub fn calculate_bounds_emg(mu: f64, sigma: f64, lambda: f64, step_size: f64, target: f64, lower_start: f64, upper_start: f64, n_steps: Option<usize>) -> (f64, f64) {
    assert!(0.0 <= target && target <= 1.0, "target must be in [0, 1]");

    let lower_initial = mu - lower_start * sigma - 2.0;
    let upper_initial = mu + upper_start * sigma;

    let steps = ((upper_initial - lower_initial) / step_size).round() as usize;
    let search_space: Vec<f64> = (0..=steps).map(|i| lower_initial + i as f64 * step_size).collect();

    let calc_cdf = |low: usize, high: usize| -> f64 {
        emg_cdf_range(search_space[low], search_space[high], mu, sigma, lambda, n_steps)
    };

    // Binary search for cutoff values
    let (mut low, mut high) = (0, steps);
    while low < high {
        let mid = low + (high - low) / 2;
        if calc_cdf(0, mid) < target {
            low = mid + 1;
        } else {
            high = mid;
        }
    }
    let upper_cutoff_index = low;

    low = 0;
    high = upper_cutoff_index;
    while low < high {
        let mid = high - (high - low) / 2;
        let prob_mid_to_upper = calc_cdf(mid, upper_cutoff_index);

        if prob_mid_to_upper < target {
            high = mid - 1;
        } else {
            low = mid;
        }
    }
    let lower_cutoff_index = high;

    (search_space[lower_cutoff_index], search_space[upper_cutoff_index])
}

pub fn calculate_frame_occurrence_emg(retention_times: &[f64], rt: f64, sigma: f64, lambda_: f64, target_p: f64, step_size: f64, n_steps: Option<usize>) -> Vec<i32> {
    let (rt_min, rt_max) = calculate_bounds_emg(rt, sigma, lambda_, step_size, target_p, 20.0, 60.0, n_steps);

    // Finding the frame closest to rt_min
    let first_frame = retention_times.iter()
        .enumerate()
        .min_by(|(_, &a), (_, &b)| (a - rt_min).abs().partial_cmp(&(b - rt_min).abs()).unwrap())
        .map(|(idx, _)| idx + 1) // Rust is zero-indexed, so +1 to match Python's 1-indexing
        .unwrap_or(0); // Fallback in case of an empty slice

    // Finding the frame closest to rt_max
    let last_frame = retention_times.iter()
        .enumerate()
        .min_by(|(_, &a), (_, &b)| (a - rt_max).abs().partial_cmp(&(b - rt_max).abs()).unwrap())
        .map(|(idx, _)| idx + 1) // Same adjustment for 1-indexing
        .unwrap_or(0); // Fallback

    // Generating the range of frames
    (first_frame..=last_frame).map(|x| x as i32).collect()
}

pub fn calculate_frame_abundance_emg(time_map: &HashMap<i32, f64>, occurrences: &[i32], rt: f64, sigma: f64, lambda_: f64, rt_cycle_length: f64, n_steps: Option<usize>) -> Vec<f64> {
    let mut frame_abundance = Vec::new();

    for &occurrence in occurrences {
        if let Some(&time) = time_map.get(&occurrence) {
            let start = time - rt_cycle_length;
            let i = emg_cdf_range(start, time, rt, sigma, lambda_, n_steps);
            frame_abundance.push(i);
        }
    }

    frame_abundance
}

// retention_times: &[f64], rt: f64, sigma: f64, lambda_: f64
pub fn calculate_frame_occurrences_emg_par(retention_times: &[f64], rts: Vec<f64>, sigmas: Vec<f64>, lambdas: Vec<f64>, target_p: f64, step_size: f64, num_threads: usize, n_steps: Option<usize>) -> Vec<Vec<i32>> {
    let thread_pool = ThreadPoolBuilder::new().num_threads(num_threads).build().unwrap();
    let result = thread_pool.install(|| {
        rts.into_par_iter().zip(sigmas.into_par_iter()).zip(lambdas.into_par_iter())
            .map(|((rt, sigma), lambda)| {
                calculate_frame_occurrence_emg(retention_times, rt, sigma, lambda, target_p, step_size, n_steps)
            })
            .collect()
    });
    result
}

pub fn calculate_frame_abundances_emg_par(time_map: &HashMap<i32, f64>, occurrences: Vec<Vec<i32>>, rts: Vec<f64>, sigmas: Vec<f64>, lambdas: Vec<f64>, rt_cycle_length: f64, num_threads: usize, n_steps: Option<usize>) -> Vec<Vec<f64>> {
    let thread_pool = ThreadPoolBuilder::new().num_threads(num_threads).build().unwrap();
    let result = thread_pool.install(|| {
        occurrences.into_par_iter().zip(rts.into_par_iter()).zip(sigmas.into_par_iter()).zip(lambdas.into_par_iter())
            .map(|(((occurrences, rt), sigma), lambda)| {
                calculate_frame_abundance_emg(time_map, &occurrences, rt, sigma, lambda, rt_cycle_length, n_steps)
            })
            .collect()
    });
    result
}

/// Returns the CDF in the range [sample_start, sample_end] for a Normal(mean, std_dev).
pub fn normal_cdf_range(lower_limit: f64, upper_limit: f64, mean: f64, std_dev: f64) -> f64 {
    let cdf_start = custom_cdf_normal(lower_limit, mean, std_dev);
    let cdf_end = custom_cdf_normal(upper_limit, mean, std_dev);
    cdf_end - cdf_start
}

/// Calculate the bounding interval [lower, upper] around `mean` that captures `target` total probability
/// using a binary search across a discretized search space. This mirrors `calculate_bounds_emg`.
pub fn calculate_bounds_gaussian(
    mean: f64,
    sigma: f64,
    step_size: f64,
    target: f64,
    lower_start: f64,
    upper_start: f64
) -> (f64, f64) {
    assert!((0.0..=1.0).contains(&target), "target must be in [0, 1]");

    let lower_initial = mean - lower_start * sigma;
    let upper_initial = mean + upper_start * sigma;

    let steps = ((upper_initial - lower_initial) / step_size).ceil() as usize;
    let search_space: Vec<f64> = (0..=steps)
        .map(|i| lower_initial + i as f64 * step_size)
        .collect();

    let calc_cdf = |low: usize, high: usize| -> f64 {
        normal_cdf_range(search_space[low], search_space[high], mean, sigma)
    };

    // 1) Find upper cutoff
    let (mut low, mut high) = (0, steps);
    while low < high {
        let mid = low + (high - low) / 2;
        if calc_cdf(0, mid) < target {
            low = mid + 1;
        } else {
            high = mid;
        }
    }
    let upper_cutoff_index = low;

    // 2) Find lower cutoff
    low = 0;
    high = upper_cutoff_index;
    while low < high {
        let mid = high - (high - low) / 2;
        if calc_cdf(mid, upper_cutoff_index) < target {
            high = mid - 1;
        } else {
            low = mid;
        }
    }
    let lower_cutoff_index = high;

    (search_space[lower_cutoff_index], search_space[upper_cutoff_index])
}

/// Returns all scan indices (0-based) that fall into the range where Normal(mean, sigma)
/// has at least `target_p` coverage.
///
/// For timsTOF data, `inverse_ion_mobility` runs backward (highest to lowest values correspond to scans).
///
/// # Arguments
///
/// - `inverse_ion_mobility`: The inverse ion mobility values for all scans (descending order).
/// - `mean`: The mean of the Gaussian distribution.
/// - `sigma`: The standard deviation of the Gaussian distribution.
/// - `target_p`: The target probability to capture.
/// - `step_size`: Step size for searching bounds.
/// - `n_lower_start`: Initial lower bound factor (relative to sigma).
/// - `n_upper_start`: Initial upper bound factor (relative to sigma).
///
/// # Returns
///
/// A `Vec<usize>` containing all scan indices (0-based) within the computed range.
///
/// # Example
///
/// ```rust
/// use mscore::algorithm::utility::calculate_scan_occurrence_gaussian;
///
/// let inverse_ion_mobility = vec![0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3];
/// let scans = calculate_scan_occurrence_gaussian(
///     &inverse_ion_mobility,
///     1.1,  // mean
///     0.001,  // sigma
///     0.9999, // target probability
///     0.01, // step size
///     3.0,  // n_lower_start
///     3.0   // n_upper_start
/// );
///
/// assert_eq!(scans, vec![2]); // Scans corresponding to 1.3 ± 1σ
/// ```
pub fn calculate_scan_occurrence_gaussian(
    inverse_ion_mobility: &[f64],
    mean: f64,
    sigma: f64,
    target_p: f64,
    step_size: f64,
    n_lower_start: f64,
    n_upper_start: f64,
) -> Vec<i32> {
    // Calculate bounds for the Gaussian
    let (ims_lower, ims_upper) = calculate_bounds_gaussian(mean, sigma, step_size, target_p, n_lower_start, n_upper_start);

    // Create a list of tuples (inverse_ion_mobility_value, index) in reverse order
    let indexed_values: Vec<(f64, usize)> = inverse_ion_mobility
        .iter()
        .rev()
        .enumerate()
        .map(|(i, &val)| (val, i))
        .collect();

    // Find the closest index to ims_lower
    let upper_idx = indexed_values
        .iter()
        .enumerate()
        .min_by(|(_, (val_a, _)), (_, (val_b, _))| {
            (val_a - ims_lower).abs().partial_cmp(&(val_b - ims_lower).abs()).unwrap()
        })
        .map(|(idx, _)| idx)
        .unwrap_or(0);

    // Find the closest index to ims_upper
    let lower_idx = indexed_values
        .iter()
        .enumerate()
        .min_by(|(_, (val_a, _)), (_, (val_b, _))| {
            (val_a - ims_upper).abs().partial_cmp(&(val_b - ims_upper).abs()).unwrap()
        })
        .map(|(idx, _)| idx)
        .unwrap_or(indexed_values.len() - 1);

    // Extract the indices of the scans in the found range
    if lower_idx <= upper_idx {
        indexed_values[lower_idx..=upper_idx]
            .iter()
            .map(|&(_, idx)| idx as i32)
            .collect()
    } else {
        Vec::new()
    }
}


/// Compute the abundance in each occurrence frame by looking at
/// the probability of Normal(mean, sigma) within `[time - rt_cycle_length, time]`.
pub fn calculate_abundance_gaussian(
    time_map: &HashMap<i32, f64>,
    occurrences: &[i32],
    mean: f64,
    sigma: f64,
    cycle_length: f64,
) -> Vec<f64> {
    let mut frame_abundance = Vec::new();

    for &occurrence in occurrences {
        if let Some(&time) = time_map.get(&occurrence) {
            let start = time - cycle_length;
            let val = normal_cdf_range(start, time, mean, sigma);
            frame_abundance.push(val);
        }
    }

    frame_abundance
}

pub fn calculate_scan_occurrences_gaussian_par(
    times: &[f64],
    means: Vec<f64>,
    sigmas: Vec<f64>,
    target_p: f64,
    step_size: f64,
    n_lower_start: f64,
    n_upper_start: f64,
    num_threads: usize
) -> Vec<Vec<i32>> {
    let thread_pool = ThreadPoolBuilder::new()
        .num_threads(num_threads)
        .build()
        .unwrap();

    thread_pool.install(|| {
        means.into_par_iter()
            .zip(sigmas.into_par_iter())
            .map(|(m, s)| {
                calculate_scan_occurrence_gaussian(
                    times,
                    m,
                    s,
                    target_p,
                    step_size,
                    n_lower_start,
                    n_upper_start
                )
            })
            .collect()
    })
}

/// Parallel version for multiple (mean, sigma) pairs to get abundance
pub fn calculate_scan_abundances_gaussian_par(
    time_map: &HashMap<i32, f64>,
    occurrences: Vec<Vec<i32>>,
    means: Vec<f64>,
    sigmas: Vec<f64>,
    cycle_length: f64,
    num_threads: usize
) -> Vec<Vec<f64>> {
    let thread_pool = ThreadPoolBuilder::new()
        .num_threads(num_threads)
        .build()
        .unwrap();

    thread_pool.install(|| {
        occurrences.into_par_iter()
            .zip(means.into_par_iter())
            .zip(sigmas.into_par_iter())
            .map(|((occ, m), s)| {
                calculate_abundance_gaussian(
                    time_map,
                    &occ,
                    m,
                    s,
                    cycle_length
                )
            })
            .collect()
    })
}

#[cfg(test)]
mod tests {
    use super::*;

    fn approx_eq(a: f64, b: f64, epsilon: f64) -> bool {
        (a - b).abs() < epsilon
    }

    #[test]
    fn test_normal_cdf_range() {
        let mean = 0.0;
        let std_dev = 1.0;

        // For a standard normal, nearly all probability is within ~[-10, 10].
        // So normal_cdf_range(-10, 10, 0, 1) should be ~1.0
        let prob_all = normal_cdf_range(-10.0, 10.0, mean, std_dev);
        assert!(approx_eq(prob_all, 1.0, 1e-6),
                "CDF range from -10 to 10 should capture nearly all probability, got {prob_all}");

        // Check an interval around mean ± 1σ -> about 68% of mass
        let prob_1sigma = normal_cdf_range(-1.0, 1.0, mean, std_dev);
        assert!(
            (prob_1sigma - 0.68).abs() < 0.02,
            "Expected ~0.68 within ±1σ, got {prob_1sigma}"
        );
    }

    #[test]
    fn test_calculate_bounds_gaussian() {
        let mean = 0.0;
        let sigma = 1.0;
        let target = 0.68;
        // We'll discretize in steps of 0.1
        let (low, high) = calculate_bounds_gaussian(mean, sigma, 0.01, target, 5.0, 5.0);

        // Check that the coverage is close to 0.68
        let coverage = normal_cdf_range(low, high, mean, sigma);
        assert!(
            (coverage - target).abs() < 0.1,
            "Expected coverage ~0.68, got {coverage} for interval [{low}, {high}]"
        );
    }

    #[test]
    fn test_calculate_frame_occurrence_gaussian() {
        // Suppose we have 10 frames of retention times from 0.0 to 9.0
        let retention_times: Vec<f64> = (0..10).map(|x| x as f64).collect();
        let mean = 5.0;   // Centered around the 5th second
        let sigma = 1.0;
        let target_p = 0.68;
        let step_size = 0.1;

        // This should capture frames near t=5.0, about ±1.0 in the "most probable" sense.
        // "lower_start" and "upper_start" here are up to you; let's do 5.0 each side
        let frames = calculate_scan_occurrence_gaussian(
            &retention_times,
            mean,
            sigma,
            target_p,
            step_size,
            5.0,
            5.0
        );

        // Expect frames near 4, 5, 6
        // Because those times (4.0, 5.0, 6.0) are the main chunk of ±1σ around 5.0
        assert!(
            !frames.is_empty(),
            "We expect at least a few frames around 5.0"
        );
        assert!(
            frames.contains(&5),
            "We definitely expect the central frame (index=5 in 1-based indexing) to be included"
        );
    }

    #[test]
    fn test_calculate_frame_abundance_gaussian() {
        // Set up a mock time map: frame_index -> time
        // We'll pretend each frame index i runs from i-1 to i in real-time
        let mut time_map = HashMap::new();
        for i in 1..=5 {
            time_map.insert(i as i32, i as f64);
        }

        // Suppose we only have two frames to check
        let occurrences = vec![1, 3];
        let mean = 3.0;
        let sigma = 1.0;
        let im_cycle_length = 1.0;

        let abundances = calculate_abundance_gaussian(
            &time_map,
            &occurrences,
            mean,
            sigma,
            im_cycle_length
        );

        // We'll do a basic sanity check:
        // - For frame 1, it integrates from time=0 to time=1.
        // - For frame 3, from 2 to 3.
        assert_eq!(abundances.len(), 2, "We should have 2 abundance values");
        let (a1, a2) = (abundances[0], abundances[1]);

        // The second abundance (covering [2,3]) should be bigger,
        // because it's closer to mean=3.0
        assert!(
            a2 > a1,
            "Expected frame near t=3 to have higher abundance than t=1"
        );
    }

    #[test]
    fn test_parallel_functions() {
        // Just a quick sanity check
        let retention_times: Vec<f64> = (0..10).map(|x| x as f64).collect();
        let means = vec![3.0, 5.0];
        let sigmas = vec![1.0, 1.5];

        let target_p = 0.68;
        let step_size = 0.1;
        let num_threads = 2;

        let res_occurrences = calculate_scan_occurrences_gaussian_par(
            &retention_times,
            means.clone(),
            sigmas.clone(),
            target_p,
            step_size,
            5.0,
            5.0,
            num_threads
        );
        assert_eq!(res_occurrences.len(), 2, "Should produce 2 sets of occurrences");

        // Mock time_map for abundances
        let mut time_map = HashMap::new();
        for i in 1..=10 {
            time_map.insert(i, i as f64);
        }

        let res_abundances = calculate_scan_abundances_gaussian_par(
            &time_map,
            res_occurrences,
            means,
            sigmas,
            1.0,          // rt_cycle_length
            num_threads
        );
        assert_eq!(res_abundances.len(), 2, "Should produce 2 sets of abundances");
    }
}