mscore/data/spectrum.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
use std::fmt;
use std::collections::BTreeMap;
use nalgebra::DVector;
use std::fmt::{Display, Formatter};
use bincode::{Decode, Encode};
use serde::{Serialize, Deserialize};
extern crate rand;
use rand::distributions::{Uniform, Distribution};
use rand::rngs::ThreadRng;
use statrs::distribution::Normal;
/// Represents a vectorized mass spectrum.
pub trait ToResolution {
fn to_resolution(&self, resolution: i32) -> Self;
}
/// Vectorized representation for Structs holding m/z values and intensities.
pub trait Vectorized<T> {
fn vectorized(&self, resolution: i32) -> T;
}
/// Represents the type of spectrum.
///
/// # Description
///
/// The `SpecType` enum is used to distinguish between precursor and fragment spectra.
///
#[derive(Clone, PartialEq, Debug, Serialize, Deserialize, Encode, Decode)]
pub enum MsType {
Precursor,
FragmentDda,
FragmentDia,
Unknown,
}
impl MsType {
/// Returns the `MsType` enum corresponding to the given integer value.
///
/// # Arguments
///
/// * `ms_type` - An integer value corresponding to the `MsType` enum.
///
pub fn new(ms_type: i32) -> MsType {
match ms_type {
0 => MsType::Precursor,
8 => MsType::FragmentDda,
9 => MsType::FragmentDia,
_ => MsType::Unknown,
}
}
/// Returns the integer value corresponding to the `MsType` enum.
pub fn ms_type_numeric(&self) -> i32 {
match self {
MsType::Precursor => 0,
MsType::FragmentDda => 8,
MsType::FragmentDia => 9,
MsType::Unknown => -1,
}
}
}
impl Default for MsType {
fn default() -> Self {
MsType::Unknown
}
}
impl Display for MsType {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
MsType::Precursor => write!(f, "Precursor"),
MsType::FragmentDda => write!(f, "FragmentDda"),
MsType::FragmentDia => write!(f, "FragmentDia"),
MsType::Unknown => write!(f, "Unknown"),
}
}
}
/// Represents a mass spectrum with associated m/z values and intensities.
#[derive(Clone, Debug, Serialize, Deserialize, Encode, Decode)]
pub struct MzSpectrum {
pub mz: Vec<f64>,
pub intensity: Vec<f64>,
}
impl MzSpectrum {
/// Constructs a new `MzSpectrum`.
///
/// # Arguments
///
/// * `mz` - A vector of m/z values.
/// * `intensity` - A vector of intensity values corresponding to the m/z values.
///
/// # Panics
///
/// Panics if the lengths of `mz` and `intensity` are not the same. (actually, it doesn't at the moment, planning on adding this later)
///
/// # Example
///
/// ```rust
/// # use mscore::data::spectrum::MzSpectrum;
/// let spectrum = MzSpectrum::new(vec![100.0, 200.0], vec![10.0, 20.0]);
/// assert_eq!(spectrum.mz, vec![100.0, 200.0]);
/// assert_eq!(spectrum.intensity, vec![10.0, 20.0]);
/// ```
pub fn new(mz: Vec<f64>, intensity: Vec<f64>) -> Self {
MzSpectrum {mz, intensity}
}
pub fn filter_ranged(&self, mz_min: f64, mz_max: f64, intensity_min:f64, intensity_max: f64) -> Self {
let mut mz_vec: Vec<f64> = Vec::new();
let mut intensity_vec: Vec<f64> = Vec::new();
for (mz, intensity) in self.mz.iter().zip(self.intensity.iter()) {
if mz_min <= *mz && *mz <= mz_max && *intensity >= intensity_min && *intensity <= intensity_max {
mz_vec.push(*mz);
intensity_vec.push(*intensity);
}
}
MzSpectrum { mz: mz_vec, intensity: intensity_vec }
}
/// Splits the spectrum into a collection of windows based on m/z values.
///
/// This function divides the spectrum into smaller spectra (windows) based on a specified window length.
/// Each window contains peaks from the original spectrum that fall within the m/z range of that window.
///
/// # Arguments
///
/// * `window_length`: The size (in terms of m/z values) of each window.
///
/// * `overlapping`: If `true`, each window will overlap with its neighboring windows by half of the `window_length`.
/// This means that a peak may belong to multiple windows. If `false`, windows do not overlap.
///
/// * `min_peaks`: The minimum number of peaks a window must have to be retained in the result.
///
/// * `min_intensity`: The minimum intensity value a window must have (in its highest intensity peak) to be retained in the result.
///
/// # Returns
///
/// A `BTreeMap` where the keys represent the window indices and the values are the spectra (`MzSpectrum`) within those windows.
/// Windows that do not meet the criteria of having at least `min_peaks` peaks or a highest intensity peak
/// greater than or equal to `min_intensity` are discarded.
///
/// # Example
///
/// ```rust
/// # use mscore::data::spectrum::MzSpectrum;
/// let spectrum = MzSpectrum::new(vec![100.0, 101.0, 102.5, 103.0], vec![10.0, 20.0, 30.0, 40.0]);
/// let windowed_spectrum = spectrum.to_windows(1.0, false, 1, 10.0);
/// assert!(windowed_spectrum.contains_key(&100));
/// assert!(windowed_spectrum.contains_key(&102));
/// ```
pub fn to_windows(&self, window_length: f64, overlapping: bool, min_peaks: usize, min_intensity: f64) -> BTreeMap<i32, MzSpectrum> {
let mut splits = BTreeMap::new();
for (i, &mz) in self.mz.iter().enumerate() {
let intensity = self.intensity[i];
let tmp_key = (mz / window_length).floor() as i32;
splits.entry(tmp_key).or_insert_with(|| MzSpectrum::new(Vec::new(), Vec::new())).mz.push(mz);
splits.entry(tmp_key).or_insert_with(|| MzSpectrum::new(Vec::new(), Vec::new())).intensity.push(intensity);
}
if overlapping {
let mut splits_offset = BTreeMap::new();
for (i, &mmz) in self.mz.iter().enumerate() {
let intensity = self.intensity[i];
let tmp_key = -((mmz + window_length / 2.0) / window_length).floor() as i32;
splits_offset.entry(tmp_key).or_insert_with(|| MzSpectrum::new(Vec::new(), Vec::new())).mz.push(mmz);
splits_offset.entry(tmp_key).or_insert_with(|| MzSpectrum::new(Vec::new(), Vec::new())).intensity.push(intensity);
}
for (key, val) in splits_offset {
splits.entry(key).or_insert_with(|| MzSpectrum::new(Vec::new(), Vec::new())).mz.extend(val.mz);
splits.entry(key).or_insert_with(|| MzSpectrum::new(Vec::new(), Vec::new())).intensity.extend(val.intensity);
}
}
splits.retain(|_, spectrum| {
spectrum.mz.len() >= min_peaks && spectrum.intensity.iter().cloned().max_by(
|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal)).unwrap_or(0.0) >= min_intensity
});
splits
}
pub fn to_centroid(&self, baseline_noise_level: i32, sigma: f64, normalize: bool) -> MzSpectrum {
let filtered = self.filter_ranged(0.0, 1e9, baseline_noise_level as f64, 1e9);
let mut cent_mz = Vec::new();
let mut cent_i: Vec<f64> = Vec::new();
let mut last_mz = 0.0;
let mut mean_mz = 0.0;
let mut sum_i = 0.0;
for (i, ¤t_mz) in filtered.mz.iter().enumerate() {
let current_intensity = filtered.intensity[i];
// If peak is too far away from last peak, push centroid
if current_mz - last_mz > sigma && mean_mz > 0.0 {
mean_mz /= sum_i;
cent_mz.push(mean_mz);
cent_i.push(sum_i);
// Start new centroid
sum_i = 0.0;
mean_mz = 0.0;
}
mean_mz += current_mz * current_intensity as f64;
sum_i += current_intensity;
last_mz = current_mz;
}
// Push back last remaining centroid
if mean_mz > 0.0 {
mean_mz /= sum_i;
cent_mz.push(mean_mz);
cent_i.push(sum_i);
}
if normalize {
let sum_i: f64 = cent_i.iter().sum();
cent_i = cent_i.iter().map(|&i| i / sum_i).collect();
}
MzSpectrum::new(cent_mz, cent_i)
}
pub fn from_collection(collection: Vec<MzSpectrum>) -> MzSpectrum {
let quantize = |mz: f64| -> i64 {
(mz * 1_000_000.0).round() as i64
};
let mut combined_map: BTreeMap<i64, f64> = BTreeMap::new();
for spectrum in collection {
for (mz, intensity) in spectrum.mz.iter().zip(spectrum.intensity.iter()) {
let key = quantize(*mz);
let entry = combined_map.entry(key).or_insert(0.0);
*entry += *intensity;
}
}
let mz_combined: Vec<f64> = combined_map.keys().map(|&key| key as f64 / 1_000_000.0).collect();
let intensity_combined: Vec<f64> = combined_map.values().cloned().collect();
MzSpectrum { mz: mz_combined, intensity: intensity_combined }
}
pub fn add_mz_noise_uniform(&self, ppm: f64, right_drag: bool) -> Self {
let mut rng = rand::thread_rng();
self.add_mz_noise(ppm, &mut rng, |rng, mz, ppm| {
let ppm_mz = match right_drag {
true => mz * ppm / 1e6 / 2.0,
false => mz * ppm / 1e6,
};
let dist = match right_drag {
true => Uniform::from(mz - (ppm_mz / 3.0)..=mz + ppm_mz),
false => Uniform::from(mz - ppm_mz..=mz + ppm_mz),
};
dist.sample(rng)
})
}
pub fn add_mz_noise_normal(&self, ppm: f64) -> Self {
let mut rng = rand::thread_rng();
self.add_mz_noise(ppm, &mut rng, |rng, mz, ppm| {
let ppm_mz = mz * ppm / 1e6;
let dist = Normal::new(mz, ppm_mz / 3.0).unwrap();
dist.sample(rng)
})
}
fn add_mz_noise<F>(&self, ppm: f64, rng: &mut ThreadRng, noise_fn: F) -> Self
where
F: Fn(&mut ThreadRng, f64, f64) -> f64,
{
let mz: Vec<f64> = self.mz.iter().map(|&mz_value| noise_fn(rng, mz_value, ppm)).collect();
let spectrum = MzSpectrum { mz, intensity: self.intensity.clone()};
// Sort the spectrum by m/z values and potentially sum up intensities at the same m/z value
spectrum.to_resolution(6)
}
}
impl ToResolution for MzSpectrum {
/// Bins the spectrum's m/z values to a given resolution and sums the intensities.
///
/// # Arguments
///
/// * `resolution` - The desired resolution in terms of decimal places. For instance, a resolution of 2
/// would bin m/z values to two decimal places.
///
/// # Returns
///
/// A new `MzSpectrum` where m/z values are binned according to the given resolution.
///
/// # Example
///
/// ```rust
/// # use mscore::data::spectrum::MzSpectrum;
/// # use mscore::data::spectrum::ToResolution;
/// let spectrum = MzSpectrum::new(vec![100.123, 100.121, 100.131], vec![10.0, 20.0, 30.0]);
/// let binned_spectrum_1 = spectrum.to_resolution(1);
/// let binned_spectrum_2 = spectrum.to_resolution(2);
/// /// assert_eq!(binned_spectrum_2.mz, vec![100.1]);
/// assert_eq!(binned_spectrum_1.intensity, vec![60.0]);
/// assert_eq!(binned_spectrum_2.mz, vec![100.12, 100.13]);
/// assert_eq!(binned_spectrum_2.intensity, vec![30.0, 30.0]);
/// ```
fn to_resolution(&self, resolution: i32) -> Self {
let mut binned: BTreeMap<i64, f64> = BTreeMap::new();
let factor = 10f64.powi(resolution);
for (mz, inten) in self.mz.iter().zip(self.intensity.iter()) {
let key = (mz * factor).round() as i64;
let entry = binned.entry(key).or_insert(0.0);
*entry += *inten;
}
let mz: Vec<f64> = binned.keys().map(|&key| key as f64 / 10f64.powi(resolution)).collect();
let intensity: Vec<f64> = binned.values().cloned().collect();
MzSpectrum { mz, intensity }
}
}
impl Vectorized<MzSpectrumVectorized> for MzSpectrum {
/// Convert the `MzSpectrum` to a `MzSpectrumVectorized` using the given resolution for binning.
///
/// After binning to the desired resolution, the binned m/z values are translated into integer indices.
fn vectorized(&self, resolution: i32) -> MzSpectrumVectorized {
let binned_spectrum = self.to_resolution(resolution);
// Translate the m/z values into integer indices
let indices: Vec<i32> = binned_spectrum.mz.iter().map(|&mz| (mz * 10f64.powi(resolution)).round() as i32).collect();
MzSpectrumVectorized {
resolution,
indices,
values: binned_spectrum.intensity,
}
}
}
/// Formats the `MzSpectrum` for display.
impl Display for MzSpectrum {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
let (mz, i) = self.mz.iter()
.zip(&self.intensity)
.max_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal))
.unwrap();
write!(f, "MzSpectrum(data points: {}, max by intensity:({}, {}))", self.mz.len(), format!("{:.3}", mz), i)
}
}
impl std::ops::Add for MzSpectrum {
type Output = Self;
/// Combines two `MzSpectrum` instances by summing up the intensities of matching m/z values.
///
/// # Description
/// Each m/z value is quantized to retain at least 6 decimals. If two spectra have m/z values
/// that quantize to the same integer value, their intensities are summed.
///
/// # Example
/// ```
/// # use mscore::data::spectrum::MzSpectrum;
/// let spectrum1 = MzSpectrum { mz: vec![100.523, 101.923], intensity: vec![10.0, 20.0] };
/// let spectrum2 = MzSpectrum { mz: vec![101.235, 105.112], intensity: vec![15.0, 30.0] };
///
/// let combined = spectrum1 + spectrum2;
///
/// assert_eq!(combined.mz, vec![100.523, 101.235, 101.923, 105.112]);
/// assert_eq!(combined.intensity, vec![10.0, 15.0, 20.0, 30.0]);
/// ```
fn add(self, other: Self) -> MzSpectrum {
let mut combined_map: BTreeMap<i64, f64> = BTreeMap::new();
// Helper to quantize mz to an integer key
let quantize = |mz: f64| -> i64 {
(mz * 1_000_000.0).round() as i64
};
// Add the m/z and intensities from the first spectrum to the map
for (mz, intensity) in self.mz.iter().zip(self.intensity.iter()) {
let key = quantize(*mz);
combined_map.insert(key, *intensity);
}
// Combine the second spectrum into the map
for (mz, intensity) in other.mz.iter().zip(other.intensity.iter()) {
let key = quantize(*mz);
let entry = combined_map.entry(key).or_insert(0.0);
*entry += *intensity;
}
// Convert the combined map back into two Vec<f64>
let mz_combined: Vec<f64> = combined_map.keys().map(|&key| key as f64 / 1_000_000.0).collect();
let intensity_combined: Vec<f64> = combined_map.values().cloned().collect();
MzSpectrum { mz: mz_combined, intensity: intensity_combined }
}
}
impl std::ops::Mul<f64> for MzSpectrum {
type Output = Self;
fn mul(self, scale: f64) -> Self::Output{
let mut scaled_intensities: Vec<f64> = vec![0.0; self.intensity.len()];
for (idx,intensity) in self.intensity.iter().enumerate(){
scaled_intensities[idx] = scale*intensity;
}
Self{ mz: self.mz.clone(), intensity: scaled_intensities}
}
}
impl std::ops::Sub for MzSpectrum {
type Output = Self;
fn sub(self, other: Self) -> Self::Output {
let mut combined_map: BTreeMap<i64, f64> = BTreeMap::new();
// Helper to quantize mz to an integer key
let quantize = |mz: f64| -> i64 {
(mz * 1_000_000.0).round() as i64
};
// Add the m/z and intensities from the first spectrum to the map
for (mz, intensity) in self.mz.iter().zip(self.intensity.iter()) {
let key = quantize(*mz);
combined_map.insert(key, *intensity);
}
// Combine the second spectrum into the map
for (mz, intensity) in other.mz.iter().zip(other.intensity.iter()) {
let key = quantize(*mz);
let entry = combined_map.entry(key).or_insert(0.0);
*entry -= *intensity;
}
// Convert the combined map back into two Vec<f64>
let mz_combined: Vec<f64> = combined_map.keys().map(|&key| key as f64 / 1_000_000.0).collect();
let intensity_combined: Vec<f64> = combined_map.values().cloned().collect();
MzSpectrum { mz: mz_combined, intensity: intensity_combined }
}
}
/// Represents a mass spectrum with associated m/z indices, m/z values, and intensities
#[derive(Clone, Debug)]
pub struct IndexedMzSpectrum {
pub index: Vec<i32>,
pub mz_spectrum: MzSpectrum,
}
impl IndexedMzSpectrum {
/// Creates a new `TOFMzSpectrum` instance.
///
/// # Arguments
///
/// * `index` - A vector containing the mz index, e.g., time-of-flight values.
/// * `mz` - A vector containing the m/z values.
/// * `intensity` - A vector containing the intensity values.
///
/// # Examples
///
/// ```
/// use mscore::data::spectrum::IndexedMzSpectrum;
/// use mscore::data::spectrum::MzSpectrum;
///
/// let spectrum = IndexedMzSpectrum::new(vec![1000, 2000], vec![100.5, 200.5], vec![50.0, 60.0]);
/// ```
pub fn new(index: Vec<i32>, mz: Vec<f64>, intensity: Vec<f64>) -> Self {
IndexedMzSpectrum { index, mz_spectrum: MzSpectrum { mz, intensity } }
}
/// Bins the spectrum based on a given m/z resolution, summing intensities and averaging index values
/// for m/z values that fall into the same bin.
///
/// # Arguments
///
/// * `resolution` - The desired m/z resolution for binning.
///
/// # Examples
///
/// ```
/// use mscore::data::spectrum::IndexedMzSpectrum;
///
/// let spectrum = IndexedMzSpectrum::new(vec![1000, 2000], vec![100.42, 100.43], vec![50.0, 60.0]);
/// let binned_spectrum = spectrum.to_resolution(1);
///
/// assert_eq!(binned_spectrum.mz_spectrum.mz, vec![100.4]);
/// assert_eq!(binned_spectrum.mz_spectrum.intensity, vec![110.0]);
/// assert_eq!(binned_spectrum.index, vec![1500]);
/// ```
pub fn to_resolution(&self, resolution: i32) -> IndexedMzSpectrum {
let mut mz_bins: BTreeMap<i64, (f64, Vec<i64>)> = BTreeMap::new();
let factor = 10f64.powi(resolution);
for ((mz, intensity), tof_val) in self.mz_spectrum.mz.iter().zip(self.mz_spectrum.intensity.iter()).zip(&self.index) {
let key = (mz * factor).round() as i64;
let entry = mz_bins.entry(key).or_insert((0.0, Vec::new()));
entry.0 += *intensity;
entry.1.push(*tof_val as i64);
}
let mz: Vec<f64> = mz_bins.keys().map(|&key| key as f64 / factor).collect();
let intensity: Vec<f64> = mz_bins.values().map(|(intensity, _)| *intensity).collect();
let tof: Vec<i32> = mz_bins.values().map(|(_, tof_vals)| {
let sum: i64 = tof_vals.iter().sum();
let count: i32 = tof_vals.len() as i32;
(sum as f64 / count as f64).round() as i32
}).collect();
IndexedMzSpectrum {index: tof, mz_spectrum: MzSpectrum {mz, intensity } }
}
/// Convert the `IndexedMzSpectrum` to a `IndexedMzVector` using the given resolution for binning.
///
/// After binning to the desired resolution, the binned m/z values are translated into integer indices.
///
/// # Arguments
///
/// * `resolution` - The desired m/z resolution for binning.
///
/// # Examples
///
/// ```
/// use mscore::data::spectrum::IndexedMzSpectrum;
///
/// let spectrum = IndexedMzSpectrum::new(vec![1000, 2000], vec![100.42, 100.43], vec![50.0, 60.0]);
/// let binned_spectrum = spectrum.to_resolution(1);
///
/// assert_eq!(binned_spectrum.mz_spectrum.mz, vec![100.4]);
/// assert_eq!(binned_spectrum.mz_spectrum.intensity, vec![110.0]);
/// assert_eq!(binned_spectrum.index, vec![1500]);
/// ```
pub fn vectorized(&self, resolution: i32) -> IndexedMzSpectrumVectorized {
let binned_spectrum = self.to_resolution(resolution);
// Translate the m/z values into integer indices
let indices: Vec<i32> = binned_spectrum.mz_spectrum.mz.iter()
.map(|&mz| (mz * 10f64.powi(resolution)).round() as i32).collect();
IndexedMzSpectrumVectorized {
index: binned_spectrum.index,
mz_vector: MzSpectrumVectorized {
resolution,
indices,
values: binned_spectrum.mz_spectrum.intensity,
}
}
}
pub fn filter_ranged(&self, mz_min: f64, mz_max: f64, intensity_min:f64, intensity_max: f64) -> Self {
let mut mz_vec: Vec<f64> = Vec::new();
let mut intensity_vec: Vec<f64> = Vec::new();
let mut index_vec: Vec<i32> = Vec::new();
for ((&mz, &intensity), &index) in self.mz_spectrum.mz.iter().zip(self.mz_spectrum.intensity.iter()).zip(self.index.iter()) {
if mz_min <= mz && mz <= mz_max && intensity >= intensity_min && intensity <= intensity_max {
mz_vec.push(mz);
intensity_vec.push(intensity);
index_vec.push(index);
}
}
IndexedMzSpectrum { index: index_vec, mz_spectrum: MzSpectrum { mz: mz_vec, intensity: intensity_vec } }
}
}
impl Display for IndexedMzSpectrum {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
let (mz, i) = self.mz_spectrum.mz.iter()
.zip(&self.mz_spectrum.intensity)
.max_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal))
.unwrap();
write!(f, "IndexedMzSpectrum(data points: {}, max by intensity:({}, {}))", self.mz_spectrum.mz.len(), format!("{:.3}", mz), i)
}
}
#[derive(Clone)]
pub struct MzSpectrumVectorized {
pub resolution: i32,
pub indices: Vec<i32>,
pub values: Vec<f64>,
}
impl MzSpectrumVectorized {
/// Convert the `MzVector` to a dense vector with a specified maximum index.
///
/// The resulting vector has length equal to `max_index + 1` and its values
/// are the intensities corresponding to each index. Indices with no associated intensity will have a value of 0.
///
/// # Arguments
///
/// * `max_index` - The maximum index for the dense vector.
fn get_max_index(&self) -> usize {
let base: i32 = 10;
let max_mz: i32 = 2000;
let max_index: usize = (max_mz*base.pow(self.resolution as u32)) as usize;
max_index
}
pub fn to_dense(&self, max_index: Option<usize>) -> DVector<f64> {
let max_index = match max_index {
Some(max_index) => max_index,
None => self.get_max_index(),
};
let mut dense_intensities: DVector<f64> = DVector::<f64>::zeros(max_index + 1);
for (&index, &intensity) in self.indices.iter().zip(self.values.iter()) {
if (index as usize) <= max_index {
dense_intensities[index as usize] = intensity;
}
}
dense_intensities
}
pub fn to_dense_spectrum(&self, max_index: Option<usize>) -> MzSpectrumVectorized{
let max_index = match max_index {
Some(max_index) => max_index,
None => self.get_max_index(),
};
let dense_intensities: Vec<f64> = self.to_dense(Some(max_index)).data.into();
let dense_indices: Vec<i32> = (0..=max_index).map(|i| i as i32).collect();
let dense_spectrum: MzSpectrumVectorized = MzSpectrumVectorized { resolution: (self.resolution), indices: (dense_indices), values: (dense_intensities) };
dense_spectrum
}
}
#[derive(Clone)]
pub struct IndexedMzSpectrumVectorized {
pub index: Vec<i32>,
pub mz_vector: MzSpectrumVectorized,
}