mscore/timstof/
quadrupole.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
use std::collections::{HashMap, HashSet};
use std::f64;
use std::f64::consts::E;
use itertools::izip;
use crate::data::spectrum::MzSpectrum;
use crate::simulation::annotation::{MzSpectrumAnnotated, TimsFrameAnnotated};
use crate::timstof::frame::TimsFrame;

/// Sigmoid step function for quadrupole selection simulation
///
/// Arguments:
///
/// * `x` - mz values
/// * `up_start` - start of the step
/// * `up_end` - end of the step
/// * `k` - steepness of the step
///
/// Returns:
///
/// * `Vec<f64>` - transmission probability for each mz value
///
/// # Examples
///
/// ```
/// use mscore::timstof::quadrupole::smooth_step;
///
/// let mz = vec![100.0, 200.0, 300.0];
/// let transmission = smooth_step(&mz, 150.0, 250.0, 0.5).iter().map(
/// |&x| (x * 100.0).round() / 100.0).collect::<Vec<f64>>();
/// assert_eq!(transmission, vec![0.0, 0.5, 1.0]);
/// ```
pub fn smooth_step(x: &Vec<f64>, up_start: f64, up_end: f64, k: f64) -> Vec<f64> {
    let m = (up_start + up_end) / 2.0;
    x.iter().map(|&xi| 1.0 / (1.0 + E.powf(-k * (xi - m)))).collect()
}

/// Sigmoide step function for quadrupole selection simulation
///
/// Arguments:
///
/// * `x` - mz values
/// * `up_start` - start of the step up
/// * `up_end` - end of the step up
/// * `down_start` - start of the step down
/// * `down_end` - end of the step down
/// * `k` - steepness of the step
///
/// Returns:
///
/// * `Vec<f64>` - transmission probability for each mz value
///
/// # Examples
///
/// ```
/// use mscore::timstof::quadrupole::smooth_step_up_down;
///
/// let mz = vec![100.0, 200.0, 300.0];
/// let transmission = smooth_step_up_down(&mz, 150.0, 200.0, 250.0, 300.0, 0.5).iter().map(
/// |&x| (x * 100.0).round() / 100.0).collect::<Vec<f64>>();
/// assert_eq!(transmission, vec![0.0, 1.0, 0.0]);
/// ```
pub fn smooth_step_up_down(x: &Vec<f64>, up_start: f64, up_end: f64, down_start: f64, down_end: f64, k: f64) -> Vec<f64> {
    let step_up = smooth_step(x, up_start, up_end, k);
    let step_down = smooth_step(x, down_start, down_end, k);
    step_up.iter().zip(step_down.iter()).map(|(&u, &d)| u - d).collect()
}

/// Ion transmission function for quadrupole selection simulation
///
/// Arguments:
///
/// * `midpoint` - center of the step
/// * `window_length` - length of the step
/// * `k` - steepness of the step
///
/// Returns:
///
/// * `impl Fn(Vec<f64>) -> Vec<f64>` - ion transmission function
///
/// # Examples
///
/// ```
/// use mscore::timstof::quadrupole::ion_transition_function_midpoint;
///
/// let ion_transmission = ion_transition_function_midpoint(150.0, 50.0, 1.0);
/// let mz = vec![100.0, 150.0, 170.0];
/// let transmission = ion_transmission(mz).iter().map(
/// |&x| (x * 100.0).round() / 100.0).collect::<Vec<f64>>();
/// assert_eq!(transmission, vec![0.0, 1.0, 1.0]);
/// ```
pub fn ion_transition_function_midpoint(midpoint: f64, window_length: f64, k: f64) -> impl Fn(Vec<f64>) -> Vec<f64> {
    let half_window = window_length / 2.0;

    let up_start = midpoint - half_window - 2.0;
    let up_end = midpoint - half_window;
    let down_start = midpoint + half_window;
    let down_end = midpoint + half_window + 2.0;

    // take a vector of mz values to their transmission probability
    move |mz: Vec<f64>| -> Vec<f64> {
        smooth_step_up_down(&mz, up_start, up_end, down_start, down_end, k)
    }
}

/// Apply ion transmission function to mz values
///
/// Arguments:
///
/// * `midpoint` - center of the step
/// * `window_length` - length of the step
/// * `k` - steepness of the step
/// * `mz` - mz values
///
/// Returns:
///
/// * `Vec<f64>` - transmission probability for each mz value
///
/// # Examples
///
/// ```
/// use mscore::timstof::quadrupole::apply_transmission;
///
/// let mz = vec![100.0, 150.0, 170.0];
/// let transmission = apply_transmission(150.0, 50.0, 1.0, mz).iter().map(
/// |&x| (x * 100.0).round() / 100.0).collect::<Vec<f64>>();
/// assert_eq!(transmission, vec![0.0, 1.0, 1.0]);
/// ```
pub fn apply_transmission(midpoint: f64, window_length: f64, k: f64, mz: Vec<f64>) -> Vec<f64> {
    ion_transition_function_midpoint(midpoint, window_length, k)(mz)
}

pub trait IonTransmission {
    fn apply_transmission(&self, frame_id: i32, scan_id: i32, mz: &Vec<f64>) -> Vec<f64>;

    /// Transmit a spectrum given a frame id and scan id
    ///
    /// Arguments:
    ///
    /// * `frame_id` - frame id
    /// * `scan_id` - scan id
    /// * `spectrum` - MzSpectrum
    /// * `min_probability` - minimum probability for transmission
    ///
    /// Returns:
    ///
    /// * `MzSpectrum` - transmitted spectrum
    ///
    fn transmit_spectrum(&self, frame_id: i32, scan_id: i32, spectrum: MzSpectrum, min_probability: Option<f64>) -> MzSpectrum {

        let probability_cutoff = min_probability.unwrap_or(0.5);
        let transmission_probability = self.apply_transmission(frame_id, scan_id, &spectrum.mz);

        let mut filtered_mz = Vec::new();
        let mut filtered_intensity = Vec::new();

        // zip mz and intensity with transmission probability and filter out all mz values with transmission probability 0.001
        for (i, (mz, intensity)) in spectrum.mz.iter().zip(spectrum.intensity.iter()).enumerate() {
            if transmission_probability[i] > probability_cutoff {
                filtered_mz.push(*mz);
                filtered_intensity.push(*intensity* transmission_probability[i]);
            }
        }

        MzSpectrum {
            mz: filtered_mz,
            intensity: filtered_intensity,
        }
    }

    /// Transmit an annotated spectrum given a frame id and scan id
    ///
    /// Arguments:
    ///
    /// * `frame_id` - frame id
    /// * `scan_id` - scan id
    /// * `spectrum` - MzSpectrumAnnotated
    /// * `min_probability` - minimum probability for transmission
    ///
    /// Returns:
    ///
    /// * `MzSpectrumAnnotated` - transmitted spectrum
    ///
    fn transmit_annotated_spectrum(&self, frame_id: i32, scan_id: i32, spectrum: MzSpectrumAnnotated, min_probability: Option<f64>) -> MzSpectrumAnnotated {
        let probability_cutoff = min_probability.unwrap_or(0.5);
        let transmission_probability = self.apply_transmission(frame_id, scan_id, &spectrum.mz);

        let mut filtered_mz = Vec::new();
        let mut filtered_intensity = Vec::new();
        let mut filtered_annotation = Vec::new();

        // zip mz and intensity with transmission probability and filter out all mz values with transmission probability 0.5
        for (i, (mz, intensity, annotation)) in izip!(spectrum.mz.iter(), spectrum.intensity.iter(), spectrum.annotations.iter()).enumerate() {
            if transmission_probability[i] > probability_cutoff {
                filtered_mz.push(*mz);
                filtered_intensity.push(*intensity* transmission_probability[i]);
                filtered_annotation.push(annotation.clone());
            }
        }

        MzSpectrumAnnotated {
            mz: filtered_mz,
            intensity: filtered_intensity,
            annotations: filtered_annotation,
        }
    }

    fn transmit_ion(&self, frame_ids: Vec<i32>, scan_ids: Vec<i32>, spec: MzSpectrum, min_proba: Option<f64>) -> Vec<Vec<MzSpectrum>> {

        let mut result: Vec<Vec<MzSpectrum>> = Vec::new();

        for frame_id in frame_ids.iter() {
            let mut frame_result: Vec<MzSpectrum> = Vec::new();
            for scan_id in scan_ids.iter() {
                let transmitted_spectrum = self.transmit_spectrum(*frame_id, *scan_id, spec.clone(), min_proba);
                frame_result.push(transmitted_spectrum);
            }
            result.push(frame_result);
        }
        result
    }

    /// Get all ions in a frame that are transmitted
    ///
    /// Arguments:
    ///
    /// * `frame_id` - frame id
    /// * `scan_id` - scan id
    /// * `mz` - mz values
    /// * `min_proba` - minimum probability for transmission
    ///
    /// Returns:
    ///
    /// * `HashSet<usize>` - indices of transmitted mz values
    ///
    fn get_transmission_set(&self, frame_id: i32, scan_id: i32, mz: &Vec<f64>, min_proba: Option<f64>) -> HashSet<usize> {
        // go over enumerated mz and push all indices with transmission probability > min_proba to a set
        let probability_cutoff = min_proba.unwrap_or(0.5);
        let transmission_probability = self.apply_transmission(frame_id, scan_id, mz);
        mz.iter().enumerate().filter(|&(i, _)| transmission_probability[i] > probability_cutoff).map(|(i, _)| i).collect()
    }

    /// Check if all mz values in a given collection are transmitted
    ///
    /// Arguments:
    ///
    /// * `frame_id` - frame id
    /// * `scan_id` - scan id
    /// * `mz` - mz values
    /// * `min_proba` - minimum probability for transmission
    ///
    /// Returns:
    ///
    /// * `bool` - true if all mz values are transmitted
    ///
    fn all_transmitted(&self, frame_id: i32, scan_id: i32, mz: &Vec<f64>, min_proba: Option<f64>) -> bool {
        let probability_cutoff = min_proba.unwrap_or(0.5);
        let transmission_probability = self.apply_transmission(frame_id, scan_id, mz);
        transmission_probability.iter().all(|&p| p > probability_cutoff)
    }

    /// Check if a single mz value is transmitted
    ///
    /// Arguments:
    ///
    /// * `frame_id` - frame id
    /// * `scan_id` - scan id
    /// * `mz` - mz value
    /// * `min_proba` - minimum probability for transmission
    ///
    /// Returns:
    ///
    /// * `bool` - true if mz value is transmitted
    ///
    fn is_transmitted(&self, frame_id: i32, scan_id: i32, mz: f64, min_proba: Option<f64>) -> bool {
        let probability_cutoff = min_proba.unwrap_or(0.5);
        let transmission_probability = self.apply_transmission(frame_id, scan_id, &vec![mz]);
        transmission_probability[0] > probability_cutoff
    }

    /// Check if any mz value is transmitted, can be used to check if one peak of isotopic envelope is transmitted
    ///
    /// Arguments:
    ///
    /// * `frame_id` - frame id
    /// * `scan_id` - scan id
    /// * `mz` - mz values
    /// * `min_proba` - minimum probability for transmission
    ///
    /// Returns:
    ///
    /// * `bool` - true if any mz value is transmitted
    ///
    fn any_transmitted(&self, frame_id: i32, scan_id: i32, mz: &Vec<f64>, min_proba: Option<f64>) -> bool {
        let probability_cutoff = min_proba.unwrap_or(0.5);
        let transmission_probability = self.apply_transmission(frame_id, scan_id, mz);
        transmission_probability.iter().any(|&p| p > probability_cutoff)
    }

    /// Transmit a frame given a diaPASEF transmission layout
    fn transmit_tims_frame(&self, frame: &TimsFrame, min_probability: Option<f64>) -> TimsFrame {
        let spectra = frame.to_tims_spectra();
        let mut filtered_spectra = Vec::new();

        for mut spectrum in spectra {
            let filtered_spectrum = self.transmit_spectrum(frame.frame_id, spectrum.scan, spectrum.spectrum.mz_spectrum, min_probability);
            if filtered_spectrum.mz.len() > 0 {
                spectrum.spectrum.mz_spectrum = filtered_spectrum;
                filtered_spectra.push(spectrum);
            }
        }

        if  filtered_spectra.len() > 0 {
            TimsFrame::from_tims_spectra(filtered_spectra)
        } else {
            TimsFrame::new(
                frame.frame_id,
                frame.ms_type.clone(),
                0.0,
                vec![],
                vec![],
                vec![],
                vec![],
                vec![]
            )
        }
    }

    /// Transmit a frame given a diaPASEF transmission layout with annotations
    ///
    /// Arguments:
    ///
    /// * `frame` - TimsFrameAnnotated
    /// * `min_probability` - minimum probability for transmission
    ///
    /// Returns:
    ///
    /// * `TimsFrameAnnotated` - transmitted frame
    ///
    fn transmit_tims_frame_annotated(&self, frame: &TimsFrameAnnotated, min_probability: Option<f64>) -> TimsFrameAnnotated {
        let spectra = frame.to_tims_spectra_annotated();
        let mut filtered_spectra = Vec::new();

        for mut spectrum in spectra {
            let filtered_spectrum = self.transmit_annotated_spectrum(frame.frame_id, spectrum.scan as i32, spectrum.spectrum.clone(), min_probability);
            if filtered_spectrum.mz.len() > 0 {
                spectrum.spectrum = filtered_spectrum;
                filtered_spectra.push(spectrum);
            }
        }

        if  filtered_spectra.len() > 0 {
            TimsFrameAnnotated::from_tims_spectra_annotated(filtered_spectra)
        } else {
            TimsFrameAnnotated::new(
                frame.frame_id,
                frame.retention_time,
                frame.ms_type.clone(),
                vec![],
                vec![],
                vec![],
                vec![],
                vec![],
                vec![]
            )
        }
    }

    fn isotopes_transmitted(&self, frame_id: i32, scan_id: i32, mz_mono: f64, isotopic_envelope: &Vec<f64>, min_probability: Option<f64>) -> (f64, Vec<(f64, f64)>) {

        let probability_cutoff = min_probability.unwrap_or(0.5);
        let transmission_probability = self.apply_transmission(frame_id, scan_id, &isotopic_envelope);
        let mut result: Vec<(f64, f64)> = Vec::new();

        for (mz, p) in isotopic_envelope.iter().zip(transmission_probability.iter()) {
            if *p > probability_cutoff {
                result.push((*mz - mz_mono, *p));
            }
        }

        (mz_mono, result)
    }
}

#[derive(Clone, Debug)]
pub struct TimsTransmissionDIA {
    frame_to_window_group: HashMap<i32, i32>,
    window_group_settings: HashMap<(i32, i32), (f64, f64)>,
    k: f64,
}

impl TimsTransmissionDIA {
    pub fn new(
        frame: Vec<i32>,
        frame_window_group: Vec<i32>,

        window_group: Vec<i32>,
        scan_start: Vec<i32>,
        scan_end: Vec<i32>,
        isolation_mz: Vec<f64>,
        isolation_width: Vec<f64>,
        k: Option<f64>,
    ) -> Self {
        // hashmap from frame to window group
        let frame_to_window_group = frame.iter().zip(frame_window_group.iter()).map(|(&f, &wg)| (f, wg)).collect::<HashMap<i32, i32>>();
        let mut window_group_settings: HashMap<(i32, i32), (f64, f64)> = HashMap::new();

        for (index, &wg) in window_group.iter().enumerate() {
            let scan_start = scan_start[index];
            let scan_end = scan_end[index];
            let isolation_mz = isolation_mz[index];
            let isolation_width = isolation_width[index];

            let value = (isolation_mz, isolation_width);

            for scan in scan_start..scan_end + 1 {
                let key = (wg, scan);
                window_group_settings.insert(key, value);
            }
        }

        Self {
            frame_to_window_group,
            window_group_settings,
            k: k.unwrap_or(2.0),
        }
    }

    pub fn frame_to_window_group(&self, frame_id: i32) -> i32 {
        let window_group = self.frame_to_window_group.get(&frame_id);
        match window_group {
            Some(&wg) => wg,
            None => -1,
        }
    }

    pub fn get_setting(&self, window_group: i32, scan_id: i32) -> Option<&(f64, f64)> {
        let setting = self.window_group_settings.get(&(window_group, scan_id));
        match setting {
            Some(s) => Some(s),
            None => None,
        }
    }

    // check if a frame is a precursor frame
    pub fn is_precursor(&self, frame_id: i32) -> bool {
        // if frame id is in the hashmap, it is not a precursor frame
        match self.frame_to_window_group.contains_key(&frame_id) {
            true => false,
            false => true,
        }
    }
}

impl IonTransmission for TimsTransmissionDIA {
    fn apply_transmission(&self, frame_id: i32, scan_id: i32, mz: &Vec<f64>) -> Vec<f64> {

        let setting = self.get_setting(self.frame_to_window_group(frame_id), scan_id);
        let is_precursor = self.is_precursor(frame_id);

        match setting {
            Some((isolation_mz, isolation_width)) => {
                apply_transmission(*isolation_mz, *isolation_width, self.k, mz.clone())
            },
            None => match is_precursor {
                true => vec![1.0; mz.len()],
                false => vec![0.0; mz.len()],
            }
        }
    }
}