mscore/timstof/
slice.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
use rayon::prelude::*;
use rayon::ThreadPoolBuilder;

use std::collections::BTreeMap;
use std::collections::BTreeSet;
use itertools::multizip;

use crate::data::spectrum::{MsType, Vectorized, ToResolution};
use crate::timstof::spectrum::{TimsSpectrum};
use crate::timstof::frame::{ImsFrame, TimsFrame, TimsFrameVectorized};

#[derive(Clone)]
pub struct TimsSlice {
    pub frames: Vec<TimsFrame>,
}

impl TimsSlice {

    /// Create a new TimsSlice from a vector of TimsFrames
    ///
    /// # Arguments
    ///
    /// * `frames` - A vector of TimsFrames
    ///
    /// # Returns
    ///
    /// * `TimsSlice` - A TimsSlice containing the TimsFrames
    ///
    /// # Example
    ///
    /// ```
    /// use mscore::timstof::slice::TimsSlice;
    ///
    /// let slice = TimsSlice::new(vec![]);
    /// ```
    pub fn new(frames: Vec<TimsFrame>) -> Self {
        TimsSlice { frames }
    }

    /// Filter the TimsSlice by m/z, scan, and intensity
    ///
    /// # Arguments
    ///
    /// * `mz_min` - The minimum m/z value
    /// * `mz_max` - The maximum m/z value
    /// * `scan_min` - The minimum scan value
    /// * `scan_max` - The maximum scan value
    /// * `intensity_min` - The minimum intensity value
    /// * `intensity_max` - The maximum intensity value
    /// * `num_threads` - The number of threads to use
    ///
    /// # Returns
    ///
    /// * `TimsSlice` - A TimsSlice containing only the TimsFrames that pass the filter
    ///
    /// # Example
    ///
    /// ```
    /// use mscore::timstof::slice::TimsSlice;
    ///
    /// let slice = TimsSlice::new(vec![]);
    /// let filtered_slice = slice.filter_ranged(400.0, 2000.0, 0, 1000, 0.0, 100000.0, 0.0, 1.6, 4);
    /// ```
    pub fn filter_ranged(&self, mz_min: f64, mz_max: f64, scan_min: i32, scan_max: i32, inv_mob_min: f64, inv_mob_max: f64, intensity_min: f64, intensity_max: f64, num_threads: usize) -> TimsSlice {

        let pool = ThreadPoolBuilder::new().num_threads(num_threads).build().unwrap(); // Set to the desired number of threads

        // Use the thread pool
        let filtered_frames = pool.install(|| {
            let result: Vec<_> =  self.frames.par_iter()
                .map(|f| f.filter_ranged(mz_min, mz_max, scan_min, scan_max, inv_mob_min, inv_mob_max, intensity_min, intensity_max))
                .collect();
            result
        });

        TimsSlice { frames: filtered_frames }
    }

    pub fn filter_ranged_ms_type_specific(&self,
                                          mz_min_ms1: f64,
                                          mz_max_ms1: f64,
                                          scan_min_ms1: i32,
                                          scan_max_ms1: i32,
                                          inv_mob_min_ms1: f64,
                                          inv_mob_max_ms1: f64,
                                          intensity_min_ms1: f64,
                                          intensity_max_ms1: f64,
                                          mz_min_ms2: f64,
                                          mz_max_ms2: f64,
                                          scan_min_ms2: i32,
                                          scan_max_ms2: i32,
                                          inv_mob_min_ms2: f64,
                                          inv_mob_max_ms2: f64,
                                          intensity_min_ms2: f64,
                                          intensity_max_ms2: f64,
                                          num_threads: usize) -> TimsSlice {

        let pool = ThreadPoolBuilder::new().num_threads(num_threads).build().unwrap(); // Set to the desired number of threads

        // Use the thread pool
        let filtered_frames = pool.install(|| {
            let result: Vec<_> =  self.frames.par_iter()
                .map(|f| match f.ms_type {
                    MsType::Precursor => f.filter_ranged(mz_min_ms1, mz_max_ms1, scan_min_ms1, scan_max_ms1, inv_mob_min_ms1, inv_mob_max_ms1, intensity_min_ms1, intensity_max_ms1),
                    _ => f.filter_ranged(mz_min_ms2, mz_max_ms2, scan_min_ms2, scan_max_ms2, inv_mob_min_ms2, inv_mob_max_ms2, intensity_min_ms2, intensity_max_ms2),
                })
                .collect();
            result
        });

        TimsSlice { frames: filtered_frames }
    }

    /// Get a vector of TimsFrames by MsType
    ///
    /// # Arguments
    ///
    /// * `t` - The MsType to filter by
    ///
    /// # Returns
    ///
    /// * `TimsSlice` - A TimsSlice containing only the TimsFrames of the specified MsType
    pub fn get_slice_by_type(&self, t: MsType) -> TimsSlice {
        let filtered_frames = self.frames.iter()
            .filter(|f| f.ms_type == t)
            .map(|f| f.clone())
            .collect();
        TimsSlice { frames: filtered_frames }
    }

    pub fn to_resolution(&self, resolution: i32, num_threads: usize) -> TimsSlice {

        let pool = ThreadPoolBuilder::new().num_threads(num_threads).build().unwrap(); // Set to the desired number of threads

        // Use the thread pool
        let result_frames = pool.install(|| {
            let result: Vec<_> =  self.frames.par_iter()
                .map(|f| f.to_resolution(resolution))
                .collect();
            result
        });

        TimsSlice { frames: result_frames }
    }

    pub fn vectorized(&self, resolution: i32, num_threads: usize) -> TimsSliceVectorized {

        let pool = ThreadPoolBuilder::new().num_threads(num_threads).build().unwrap();

        // Use the thread pool
        let result_frames = pool.install(|| {
            let result: Vec<_> =  self.frames.par_iter()
                .map(|f| f.vectorized(resolution))
                .collect();
            result
        });

        let frame_map = get_index_map(&result_frames);

        TimsSliceVectorized { frames: result_frames, frame_map }
    }

    pub fn from_flat_slice(frame_ids: Vec<i32>,
                           scans: Vec<i32>,
                           tofs: Vec<i32>,
                           retention_times: Vec<f64>,
                           mobilities: Vec<f64>,
                           mzs: Vec<f64>,
                           intensities: Vec<f64>) -> Self {

        let mut frames = Vec::new();
        let unique_frame_ids: BTreeSet<_> = frame_ids.iter().cloned().collect();

        for frame_id in unique_frame_ids {
            let indices: Vec<usize> = frame_ids.iter().enumerate().filter(|(_, &x)| x == frame_id).map(|(i, _)| i).collect();
            let mut scan = Vec::new();
            let mut tof = Vec::new();
            let mut retention_time = Vec::new();
            let mut mobility = Vec::new();
            let mut mz = Vec::new();
            let mut intensity = Vec::new();

            for index in indices {
                scan.push(scans[index]);
                tof.push(tofs[index]);
                retention_time.push(retention_times[index]);
                mobility.push(mobilities[index]);
                mz.push(mzs[index]);
                intensity.push(intensities[index]);
            }

            let ims_frame = ImsFrame {
                retention_time: retention_time[0],
                mobility,
                mz,
                intensity,
            };

            let tims_frame = TimsFrame {
                frame_id,
                ms_type: MsType::Unknown,
                scan,
                tof,
                ims_frame,
            };

            frames.push(tims_frame);
        }

        TimsSlice { frames }
    }

    pub fn flatten(&self) -> TimsSliceFlat {
        let mut frame_ids = Vec::new();
        let mut scans = Vec::new();
        let mut tofs = Vec::new();
        let mut retention_times = Vec::new();
        let mut mobilities = Vec::new();
        let mut mzs = Vec::new();
        let mut intensities = Vec::new();

        for frame in &self.frames {
            let length = frame.scan.len();
            frame_ids.extend(vec![frame.frame_id; length].into_iter());
            scans.extend(frame.scan.clone());
            tofs.extend(frame.tof.clone());
            retention_times.extend(vec![frame.ims_frame.retention_time; length].into_iter());
            mobilities.extend(&frame.ims_frame.mobility);
            mzs.extend(&frame.ims_frame.mz);
            intensities.extend(&frame.ims_frame.intensity);
        }

        TimsSliceFlat {
            frame_ids,
            scans,
            tofs,
            retention_times,
            mobilities,
            mzs,
            intensities,
        }
    }

    pub fn to_windows(&self, window_length: f64, overlapping: bool, min_peaks: usize, min_intensity: f64, num_threads: usize) -> Vec<TimsSpectrum> {
        // Create a thread pool
        let pool = ThreadPoolBuilder::new().num_threads(num_threads).build().unwrap(); // Set to the desired number of threads

        // Use the thread pool
        let windows = pool.install(|| {
            let windows: Vec<_> = self.frames.par_iter()
                .flat_map( | frame | frame.to_windows(window_length, overlapping, min_peaks, min_intensity))
                .collect();
            windows
        });

        windows
    }

    pub fn to_dense_windows(&self, window_length: f64, overlapping: bool, min_peaks: usize, min_intensity: f64, resolution: i32, num_threads: usize) -> Vec<(Vec<f64>, Vec<i32>, Vec<i32>, usize, usize)> {
        let pool = ThreadPoolBuilder::new().num_threads(num_threads).build().unwrap();

        let result = pool.install(|| {
            let t = self.frames.par_iter().map(|f| f.to_dense_windows(window_length, overlapping, min_peaks, min_intensity, resolution)).collect::<Vec<_>>();
            t
        });

        result
    }

    pub fn to_tims_planes(&self, tof_max_value: i32, num_chunks: i32, num_threads: usize) -> Vec<TimsPlane> {

        let flat_slice = self.flatten();

        let chunk_size = (tof_max_value as f64 / num_chunks as f64) as i32;

        // Calculate range_and_width based on num_chunks and chunk_size
        let range_and_width: Vec<(i32, i32)> = (1..=num_chunks)
            .map(|i| (chunk_size * i, i + 2))
            .collect();

        let mut tof_map: BTreeMap<(i32, i32), (Vec<i32>, Vec<f64>, Vec<i32>, Vec<f64>, Vec<i32>, Vec<f64>, Vec<f64>)> = BTreeMap::new();

        // Iterate over the data points using multizip
        for (id, rt, scan, mobility, tof, mz, intensity)

        in multizip((flat_slice.frame_ids, flat_slice.retention_times, flat_slice.scans, flat_slice.mobilities, flat_slice.tofs, flat_slice.mzs, flat_slice.intensities)) {

            for &(switch_point, width) in &range_and_width {
                if tof < switch_point {

                    let key = (width, (tof as f64 / width as f64).floor() as i32);

                    tof_map.entry(key).or_insert_with(|| (vec![], vec![], vec![], vec![], vec![], vec![], vec![])).0.push(id);
                    tof_map.entry(key).or_insert_with(|| (vec![], vec![], vec![], vec![], vec![], vec![], vec![])).1.push(rt);
                    tof_map.entry(key).or_insert_with(|| (vec![], vec![], vec![], vec![], vec![], vec![], vec![])).2.push(scan);
                    tof_map.entry(key).or_insert_with(|| (vec![], vec![], vec![], vec![], vec![], vec![], vec![])).3.push(mobility);
                    tof_map.entry(key).or_insert_with(|| (vec![], vec![], vec![], vec![], vec![], vec![], vec![])).4.push(tof);
                    tof_map.entry(key).or_insert_with(|| (vec![], vec![], vec![], vec![], vec![], vec![], vec![])).5.push(mz);
                    tof_map.entry(key).or_insert_with(|| (vec![], vec![], vec![], vec![], vec![], vec![], vec![])).6.push(intensity);

                    break
                }
            }
        }

        // Create a thread pool with the desired number of threads
        let pool = ThreadPoolBuilder::new().num_threads(num_threads).build().unwrap();

        let tims_planes: Vec<TimsPlane> = pool.install(|| {
            tof_map.par_iter()
                .map(|(key, values)| collapse_entry(key, values))
                .collect()
        });

        tims_planes
    }
}

#[derive(Clone)]
pub struct TimsSliceVectorized {
    pub frames: Vec<TimsFrameVectorized>,
    pub frame_map: BTreeMap<u32, (Vec<u32>, Vec<u32>, Vec<f32>)>
}

impl TimsSliceVectorized {

    pub fn filter_ranged(&self, mz_min: f64, mz_max: f64, scan_min: i32, scan_max: i32, inv_mob_min: f64, inv_mob_max: f64, intensity_min: f64, intensity_max: f64, num_threads: usize) -> TimsSliceVectorized {

        let pool = ThreadPoolBuilder::new().num_threads(num_threads).build().unwrap(); // Set to the desired number of threads

        // Use the thread pool
        let filtered_frames = pool.install(|| {
            let result: Vec<_> =  self.frames.par_iter()
                .map(|f| f.filter_ranged(mz_min, mz_max, scan_min, scan_max, inv_mob_min, inv_mob_max, intensity_min, intensity_max))
                .collect();
            result
        });

        let frame_map = get_index_map(&filtered_frames);

        TimsSliceVectorized { frames: filtered_frames, frame_map }
    }

    pub fn get_vectors_at_index(&self, index: u32) -> Option<(Vec<u32>, Vec<u32>, Vec<f32>)> {
        self.frame_map.get(&index).cloned()
    }

    pub fn flatten(&self) -> TimsSliceVectorizedFlat {
        let mut frame_ids = Vec::new();
        let mut scans = Vec::new();
        let mut tofs = Vec::new();
        let mut retention_times = Vec::new();
        let mut mobilities = Vec::new();
        let mut indices = Vec::new();
        let mut intensities = Vec::new();

        for frame in &self.frames {
            let length = frame.ims_frame.indices.len();
            frame_ids.extend(vec![frame.frame_id; length].into_iter());
            scans.extend(frame.scan.clone());
            tofs.extend(frame.tof.clone());
            retention_times.extend(vec![frame.ims_frame.retention_time; length].into_iter());
            mobilities.extend(&frame.ims_frame.mobility);
            indices.extend(&frame.ims_frame.indices);
            intensities.extend(&frame.ims_frame.values);
        }

        TimsSliceVectorizedFlat {
            frame_ids,
            scans,
            tofs,
            retention_times,
            mobilities,
            indices,
            intensities,
        }
    }
}

fn get_index_map(frames: &Vec<TimsFrameVectorized>) -> BTreeMap<u32, (Vec<u32>, Vec<u32>, Vec<f32>)> {
    let mut index_map: BTreeMap<u32, Vec<(u32, u32, f32)>> = BTreeMap::new();

    for frame in frames {
        for (i, index) in frame.ims_frame.indices.iter().enumerate() {
            let entry = index_map.entry(*index as u32).or_insert_with(|| vec![]);
            entry.push((frame.frame_id as u32, frame.scan[i] as u32, frame.ims_frame.values[i] as f32));
        }
    }

    let mut result_map: BTreeMap<u32, (Vec<u32>, Vec<u32>, Vec<f32>)> = BTreeMap::new();

    for (index, values) in index_map {
        for (frame_id, scan, intensity) in values {
            let entry = result_map.entry(index).or_insert_with(|| (vec![], vec![], vec![]));
            entry.0.push(frame_id);
            entry.1.push(scan);
            entry.2.push(intensity);
        }
    }

    result_map
}

#[derive(Clone)]
pub struct TimsPlane {
    pub tof_mean: f64,
    pub tof_std: f64,
    pub mz_mean: f64,
    pub mz_std: f64,

    pub frame_id: Vec<i32>,
    pub retention_time: Vec<f64>,
    pub scan: Vec<i32>,
    pub mobility: Vec<f64>,
    pub intensity: Vec<f64>,
}

fn collapse_entry(_key: &(i32, i32), values: &(Vec<i32>, Vec<f64>, Vec<i32>, Vec<f64>, Vec<i32>, Vec<f64>, Vec<f64>)) -> TimsPlane {

    let (frame_ids, retention_times, scans, mobilities, tofs, mzs, intensities) = values;

    // 1. Calculate mean and std for tof and mz
    let tof_mean: f64 = tofs.iter().map(|&x| x as f64).sum::<f64>() / tofs.len() as f64;
    let tof_std: f64 = (tofs.iter().map(|&x| (x as f64 - tof_mean).powi(2)).sum::<f64>() / tofs.len() as f64).sqrt();
    let mz_mean: f64 = mzs.iter().map(|&x| x as f64).sum::<f64>() / mzs.len() as f64;
    let mz_std: f64 = (mzs.iter().map(|&x| (x as f64 - mz_mean).powi(2)).sum::<f64>() / mzs.len() as f64).sqrt();

    // 2. Aggregate data by frame_id and scan using a BTreeMap for sorted order
    let mut grouped_data: BTreeMap<(i32, i32), (f64, f64, f64)> = BTreeMap::new();

    for (f, r, s, m, i) in multizip((frame_ids, retention_times, scans, mobilities, intensities)) {
        let key = (*f, *s);
        let entry = grouped_data.entry(key).or_insert((0.0, 0.0, 0.0));  // (intensity_sum, mobility, retention_time)
        entry.0 += *i;
        entry.1 = *m;
        entry.2 = *r;
    }

    // Extract data from the grouped_data
    let mut frame_id = vec![];
    let mut retention_time = vec![];
    let mut scan = vec![];
    let mut mobility = vec![];
    let mut intensity = vec![];

    for ((f, s), (i, m, r)) in grouped_data {
        frame_id.push(f);
        retention_time.push(r);
        scan.push(s);
        mobility.push(m);
        intensity.push(i);
    }

    TimsPlane {
        tof_mean,
        tof_std,
        mz_mean,
        mz_std,
        frame_id,
        retention_time,
        scan,
        mobility,
        intensity,
    }
}

#[derive(Clone, Debug)]
pub struct TimsSliceFlat {
    pub frame_ids: Vec<i32>,
    pub scans: Vec<i32>,
    pub tofs: Vec<i32>,
    pub retention_times: Vec<f64>,
    pub mobilities: Vec<f64>,
    pub mzs: Vec<f64>,
    pub intensities: Vec<f64>,
}

#[derive(Clone, Debug)]
pub struct TimsSliceVectorizedFlat {
    pub frame_ids: Vec<i32>,
    pub scans: Vec<i32>,
    pub tofs: Vec<i32>,
    pub retention_times: Vec<f64>,
    pub mobilities: Vec<f64>,
    pub indices: Vec<i32>,
    pub intensities: Vec<f64>,
}