1use std::fmt;
2use std::collections::BTreeMap;
3use std::fmt::{Formatter};
4use bincode::{Decode, Encode};
5use itertools;
6use itertools::izip;
7use ordered_float::OrderedFloat;
8use rand::Rng;
9use serde::{Deserialize, Serialize};
10use crate::timstof::spectrum::TimsSpectrum;
11use crate::data::spectrum::{MsType, MzSpectrum, IndexedMzSpectrum, Vectorized, ToResolution};
12use crate::simulation::annotation::{PeakAnnotation, TimsFrameAnnotated};
13use crate::timstof::vec_utils::{filter_with_mask, find_sparse_local_maxima_mask};
14
15#[derive(Clone)]
16pub struct RawTimsFrame {
17 pub frame_id: i32,
18 pub retention_time: f64,
19 pub ms_type: MsType,
20 pub scan: Vec<u32>,
21 pub tof: Vec<u32>,
22 pub intensity: Vec<f64>,
23}
24
25impl RawTimsFrame {
26 pub fn smooth(mut self, window: u32) -> Self {
27 let mut smooth_intensities: Vec<f64> = self.intensity.clone();
28 for (current_index, current_tof) in self.tof.iter().enumerate()
29 {
30 let current_intensity: f64 = self.intensity[current_index];
31 for (_next_index, next_tof) in
32 self.tof[current_index + 1..].iter().enumerate()
33 {
34 let next_index: usize = _next_index + current_index + 1;
35 let next_intensity: f64 = self.intensity[next_index];
36 if (next_tof - current_tof) <= window {
37 smooth_intensities[current_index] += next_intensity;
38 smooth_intensities[next_index] += current_intensity;
39 } else {
40 break;
41 }
42 }
43 }
44 self.intensity = smooth_intensities;
45
46 self
47 }
48 pub fn centroid(mut self, window: u32) -> Self {
49 let local_maxima: Vec<bool> = find_sparse_local_maxima_mask(
50 &self.tof,
51 &self.intensity,
52 window,
53 );
54 self.tof = filter_with_mask(&self.tof, &local_maxima);
55 self.intensity = filter_with_mask(&self.intensity, &local_maxima);
56 self.scan = filter_with_mask(&self.scan, &local_maxima);
57 self
58 }
59}
60
61#[derive(Clone, Debug, Default, Serialize, Deserialize, Encode, Decode)]
62pub struct ImsFrame {
63 pub retention_time: f64,
64 pub mobility: Vec<f64>,
65 pub mz: Vec<f64>,
66 pub intensity: Vec<f64>,
67}
68
69impl ImsFrame {
70 pub fn new(retention_time: f64, mobility: Vec<f64>, mz: Vec<f64>, intensity: Vec<f64>) -> Self {
87 ImsFrame { retention_time, mobility, mz, intensity }
88 }
89}
90
91impl fmt::Display for ImsFrame {
92 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
93 write!(f, "ImsFrame(rt: {}, data points: {})", self.retention_time, self.mobility.len())
94 }
95}
96
97#[derive(Clone)]
98pub struct ImsFrameVectorized {
99 pub retention_time: f64,
100 pub mobility: Vec<f64>,
101 pub indices: Vec<i32>,
102 pub values: Vec<f64>,
103 pub resolution: i32,
104}
105
106#[derive(Clone, Debug, Serialize, Deserialize, Encode, Decode)]
107pub struct TimsFrame {
108 pub frame_id: i32,
109 pub ms_type: MsType,
110 pub scan: Vec<i32>,
111 pub tof: Vec<i32>,
112 pub ims_frame: ImsFrame,
113}
114
115impl Default for TimsFrame {
116 fn default() -> Self {
117 TimsFrame {
118 frame_id: 0, ms_type: MsType::Unknown,
120 scan: Vec::new(),
121 tof: Vec::new(),
122 ims_frame: ImsFrame::default(), }
124 }
125}
126
127impl TimsFrame {
128 pub fn new(frame_id: i32, ms_type: MsType, retention_time: f64, scan: Vec<i32>, mobility: Vec<f64>, tof: Vec<i32>, mz: Vec<f64>, intensity: Vec<f64>) -> Self {
151 TimsFrame { frame_id, ms_type, scan, tof, ims_frame: ImsFrame { retention_time, mobility, mz, intensity } }
152 }
153
154 pub fn get_ims_frame(&self) -> ImsFrame { self.ims_frame.clone() }
167
168 pub fn to_tims_spectra(&self) -> Vec<TimsSpectrum> {
181 let mut spectra = BTreeMap::<i32, (f64, Vec<i32>, Vec<f64>, Vec<f64>)>::new();
183
184 for (scan, mobility, tof, mz, intensity) in itertools::multizip((
186 &self.scan,
187 &self.ims_frame.mobility,
188 &self.tof,
189 &self.ims_frame.mz,
190 &self.ims_frame.intensity)) {
191 let entry = spectra.entry(*scan).or_insert_with(|| (*mobility, Vec::new(), Vec::new(), Vec::new()));
192 entry.1.push(*tof);
193 entry.2.push(*mz);
194 entry.3.push(*intensity);
195 }
196
197 let mut tims_spectra: Vec<TimsSpectrum> = Vec::new();
199
200 for (scan, (mobility, tof, mz, intensity)) in spectra {
201 let spectrum = IndexedMzSpectrum::new(tof, mz, intensity);
202 tims_spectra.push(TimsSpectrum::new(self.frame_id, scan, self.ims_frame.retention_time, mobility, self.ms_type.clone(), spectrum));
203 }
204
205 tims_spectra
206 }
207
208 pub fn filter_ranged(&self, mz_min: f64, mz_max: f64, scan_min: i32, scan_max: i32, inv_mob_min: f64, inv_mob_max: f64, intensity_min: f64, intensity_max: f64) -> TimsFrame {
231
232 let mut scan_vec = Vec::new();
233 let mut mobility_vec = Vec::new();
234 let mut tof_vec = Vec::new();
235 let mut mz_vec = Vec::new();
236 let mut intensity_vec = Vec::new();
237
238 for (mz, intensity, scan, mobility, tof) in itertools::multizip((&self.ims_frame.mz, &self.ims_frame.intensity, &self.scan, &self.ims_frame.mobility, &self.tof)) {
239 if mz >= &mz_min && mz <= &mz_max && scan >= &scan_min && scan <= &scan_max && mobility >= &inv_mob_min && mobility <= &inv_mob_max && intensity >= &intensity_min && intensity <= &intensity_max {
240 scan_vec.push(*scan);
241 mobility_vec.push(*mobility);
242 tof_vec.push(*tof);
243 mz_vec.push(*mz);
244 intensity_vec.push(*intensity);
245 }
246 }
247
248 TimsFrame::new(self.frame_id, self.ms_type.clone(), self.ims_frame.retention_time, scan_vec, mobility_vec, tof_vec, mz_vec, intensity_vec)
249 }
250
251 pub fn top_n(&self, n: usize) -> TimsFrame {
252 let mut indices: Vec<usize> = (0..self.ims_frame.intensity.len()).collect();
253 indices.sort_by(|a, b| self.ims_frame.intensity[*b].partial_cmp(&self.ims_frame.intensity[*a]).unwrap());
254 indices.truncate(n);
255
256 let scan = indices.iter().map(|&i| self.scan[i]).collect();
257 let mobility = indices.iter().map(|&i| self.ims_frame.mobility[i]).collect();
258 let tof = indices.iter().map(|&i| self.tof[i]).collect();
259 let mz = indices.iter().map(|&i| self.ims_frame.mz[i]).collect();
260 let intensity = indices.iter().map(|&i| self.ims_frame.intensity[i]).collect();
261
262 TimsFrame::new(self.frame_id, self.ms_type.clone(), self.ims_frame.retention_time, scan, mobility, tof, mz, intensity)
263 }
264
265 pub fn to_windows_indexed(&self, window_length: f64, overlapping: bool, min_peaks: usize, min_intensity: f64) -> (Vec<i32>, Vec<i32>, Vec<TimsSpectrum>) {
266 let spectra = self.to_tims_spectra();
268
269 let windows: Vec<_> = spectra.iter().map(|spectrum|
270 spectrum.to_windows(window_length, overlapping, min_peaks, min_intensity))
271 .collect();
272
273 let mut scan_indices = Vec::new();
274
275 for tree in windows.iter() {
276 for (_, window) in tree {
277 scan_indices.push(window.scan)
278 }
279 }
280
281 let mut spectra = Vec::new();
282 let mut window_indices = Vec::new();
283
284 for window in windows {
285 for (i, spectrum) in window {
286 spectra.push(spectrum);
287 window_indices.push(i);
288 }
289 }
290
291 (scan_indices, window_indices, spectra)
292 }
293
294 pub fn to_windows(&self, window_length: f64, overlapping: bool, min_peaks: usize, min_intensity: f64) -> Vec<TimsSpectrum> {
295 let (_, _, widows) = self.to_windows_indexed(window_length, overlapping, min_peaks, min_intensity);
296 widows
297 }
298
299 pub fn from_windows(windows: Vec<TimsSpectrum>) -> TimsFrame {
300
301 let first_window = windows.first().unwrap();
302
303 let mut scan = Vec::new();
304 let mut tof = Vec::new();
305 let mut mzs = Vec::new();
306 let mut intensity = Vec::new();
307 let mut mobility = Vec::new();
308
309 for window in windows.iter() {
310 for (i, mz) in window.spectrum.mz_spectrum.mz.iter().enumerate() {
311 scan.push(window.scan);
312 mobility.push(window.mobility);
313 tof.push(window.spectrum.index[i]);
314 mzs.push(*mz);
315 intensity.push(window.spectrum.mz_spectrum.intensity[i]);
316 }
317 }
318
319 TimsFrame::new(first_window.frame_id, first_window.ms_type.clone(), first_window.retention_time, scan, mobility, tof, mzs, intensity)
320 }
321
322 pub fn from_tims_spectra(spectra: Vec<TimsSpectrum>) -> TimsFrame {
323
324 let quantize = |mz: f64| -> i64 {
326 (mz * 1_000_000.0).round() as i64
327 };
328
329 let first_spec = spectra.first();
331 let frame_id = match first_spec {
332 Some(first_spec) => first_spec.frame_id,
333 _ => 1
334 };
335
336 let ms_type = match first_spec {
337 Some(first_spec) => first_spec.ms_type.clone(),
338 _ => MsType::Unknown,
339 };
340
341 let retention_time = match first_spec {
342 Some(first_spec) => first_spec.retention_time,
343 _ => 0.0
344 };
345
346 let mut frame_map: BTreeMap<i32, (f64, BTreeMap<i64, (i32, f64)>)> = BTreeMap::new();
347 let mut capacity_count = 0;
348
349 for spectrum in &spectra {
351 let inv_mobility = spectrum.mobility;
352 let entry = frame_map.entry(spectrum.scan).or_insert_with(|| (inv_mobility, BTreeMap::new()));
353 for (i, mz) in spectrum.spectrum.mz_spectrum.mz.iter().enumerate() {
354 let tof = spectrum.spectrum.index[i];
355 let intensity = spectrum.spectrum.mz_spectrum.intensity[i];
356 entry.1.entry(quantize(*mz)).and_modify(|e| *e = (tof, e.1 + intensity)).or_insert((tof, intensity));
357 capacity_count += 1;
358 }
359 }
360
361 let mut scan = Vec::with_capacity(capacity_count);
363 let mut mobility = Vec::with_capacity(capacity_count);
364 let mut tof = Vec::with_capacity(capacity_count);
365 let mut mzs = Vec::with_capacity(capacity_count);
366 let mut intensity = Vec::with_capacity(capacity_count);
367
368 for (scan_val, (mobility_val, mz_map)) in frame_map {
369 for (mz_val, (tof_val, intensity_val)) in mz_map {
370 scan.push(scan_val);
371 mobility.push(mobility_val);
372 tof.push(tof_val);
373 mzs.push(mz_val as f64 / 1_000_000.0);
374 intensity.push(intensity_val);
375 }
376 }
377
378 TimsFrame::new(frame_id, ms_type, retention_time, scan, mobility, tof, mzs, intensity)
379 }
380
381 pub fn to_dense_windows(&self, window_length: f64, overlapping: bool, min_peaks: usize, min_intensity: f64, resolution: i32) -> (Vec<f64>, Vec<i32>, Vec<i32>, usize, usize) {
382 let factor = (10.0f64).powi(resolution);
383 let num_colums = ((window_length * factor).round() + 1.0) as usize;
384
385 let (scans, window_indices, spectra) = self.to_windows_indexed(window_length, overlapping, min_peaks, min_intensity);
386 let vectorized_spectra = spectra.iter().map(|spectrum| spectrum.vectorized(resolution)).collect::<Vec<_>>();
387
388 let mut flat_matrix: Vec<f64> = vec![0.0; spectra.len() * num_colums];
389
390 for (row_index, (window_index, spectrum)) in itertools::multizip((&window_indices, vectorized_spectra)).enumerate() {
391
392 let vectorized_window_index = match *window_index >= 0 {
393 true => (*window_index as f64 * window_length * factor).round() as i32,
394 false => (((-1.0 * (*window_index as f64)) * window_length - (0.5 * window_length)) * factor).round() as i32,
395 };
396
397 for (i, index) in spectrum.vector.mz_vector.indices.iter().enumerate() {
398 let zero_based_index = (index - vectorized_window_index) as usize;
399 let current_index = row_index * num_colums + zero_based_index;
400 flat_matrix[current_index] = spectrum.vector.mz_vector.values[i];
401 }
402
403 }
404 (flat_matrix, scans, window_indices, spectra.len(), num_colums)
405 }
406
407
408 pub fn to_indexed_mz_spectrum(&self) -> IndexedMzSpectrum {
409 let mut grouped_data: BTreeMap<i32, Vec<(f64, f64)>> = BTreeMap::new();
410
411 for (&tof, (&mz, &intensity)) in self.tof.iter().zip(self.ims_frame.mz.iter().zip(self.ims_frame.intensity.iter())) {
413 grouped_data.entry(tof).or_insert_with(Vec::new).push((mz, intensity));
414 }
415
416 let mut index = Vec::new();
417 let mut mz = Vec::new();
418 let mut intensity = Vec::new();
419
420 for (&tof_val, values) in &grouped_data {
421 let sum_intensity: f64 = values.iter().map(|&(_, i)| i).sum();
422 let avg_mz: f64 = values.iter().map(|&(m, _)| m).sum::<f64>() / values.len() as f64;
423
424 index.push(tof_val);
425 mz.push(avg_mz);
426 intensity.push(sum_intensity);
427 }
428
429 IndexedMzSpectrum {
430 index,
431 mz_spectrum: MzSpectrum { mz, intensity },
432 }
433 }
434
435 pub fn generate_random_sample(&self, take_probability: f64) -> TimsFrame {
436 assert!(take_probability >= 0.0 && take_probability <= 1.0);
437
438 let mut rng = rand::thread_rng();
439 let mut scan = Vec::new();
440 let mut mobility = Vec::new();
441 let mut tof = Vec::new();
442 let mut mz = Vec::new();
443 let mut intensity = Vec::new();
444
445 for (s, m, t, mz_val, i) in itertools::multizip((&self.scan, &self.ims_frame.mobility, &self.tof, &self.ims_frame.mz, &self.ims_frame.intensity)) {
446 if rng.gen::<f64>() <= take_probability {
447 scan.push(*s);
448 mobility.push(*m);
449 tof.push(*t);
450 mz.push(*mz_val);
451 intensity.push(*i);
452 }
453 }
454
455 TimsFrame::new(self.frame_id, self.ms_type.clone(), self.ims_frame.retention_time, scan, mobility, tof, mz, intensity)
456 }
457
458 pub fn to_noise_annotated_tims_frame(&self) -> TimsFrameAnnotated {
459 let mut annotations = Vec::with_capacity(self.ims_frame.mz.len());
460 let tof_values = self.tof.clone();
461 let mz_values = self.ims_frame.mz.clone();
462 let scan_values = self.scan.clone();
463 let inv_mobility_values = self.ims_frame.mobility.clone();
464 let intensity_values = self.ims_frame.intensity.clone();
465
466 for intensity in &intensity_values {
467 annotations.push(PeakAnnotation::new_random_noise(*intensity));
468 }
469
470 TimsFrameAnnotated::new(
471 self.frame_id,
472 self.ims_frame.retention_time,
473 self.ms_type.clone(),
474 tof_values.iter().map(|&x| x as u32).collect(),
475 mz_values,
476 scan_values.iter().map(|&x| x as u32).collect(),
477 inv_mobility_values,
478 intensity_values,
479 annotations,
480 )
481 }
482
483 pub fn get_inverse_mobility_along_scan_marginal(&self) -> f64 {
484 let mut marginal_map: BTreeMap<i32, (f64, f64)> = BTreeMap::new();
485 for (scan, inv_mob, intensity) in izip!(&self.scan, &self.ims_frame.mobility, &self.ims_frame.intensity) {
487 let key = *scan;
489 let entry = marginal_map.entry(key).or_insert((0.0, 0.0));
491 entry.0 += *intensity;
493 entry.1 = *inv_mob;
495 }
496
497 let (_, max_inv_mob) = marginal_map.iter().max_by(|a, b| a.1.0.partial_cmp(&b.1.0).unwrap_or(std::cmp::Ordering::Equal)).unwrap_or((&0, &(0.0, 0.0))).1;
499
500 *max_inv_mob
501 }
502
503 pub fn get_mobility_mean_and_variance(&self) -> (f64, f64) {
505 let mut mobility_map: BTreeMap<OrderedFloat<f64>, f64> = BTreeMap::new();
506
507 for (inv_mob, intensity) in izip!(&self.ims_frame.mobility, &self.ims_frame.intensity) {
509 let entry = mobility_map.entry(OrderedFloat(*inv_mob)).or_insert(0.0);
510 *entry += *intensity;
511 }
512
513 let mut total_weight = 0.0;
515 let mut weighted_sum = 0.0;
516 for (&inv_mob, &intensity) in &mobility_map {
517 total_weight += intensity;
518 weighted_sum += inv_mob.into_inner() * intensity;
519 }
520 let mean = weighted_sum / total_weight;
521
522 let mut weighted_squared_diff_sum = 0.0;
524 for (&inv_mob, &intensity) in &mobility_map {
525 let diff = inv_mob.into_inner() - mean;
526 weighted_squared_diff_sum += intensity * diff * diff;
527 }
528 let variance = weighted_squared_diff_sum / total_weight;
529
530 (mean, variance)
531 }
532
533 pub fn get_tims_spectrum(&self, scan_number: i32) -> Option<TimsSpectrum> {
534 let mut tof = Vec::new();
535 let mut mz = Vec::new();
536 let mut intensity = Vec::new();
537
538 for (s, t, m, i) in itertools::multizip((&self.scan, &self.tof, &self.ims_frame.mz, &self.ims_frame.intensity)) {
539 if *s == scan_number {
540 tof.push(*t);
541 mz.push(*m);
542 intensity.push(*i);
543 }
544 }
545
546 if mz.is_empty() {
547 return None;
548 }
549
550 let mobility = self.ims_frame.mobility.iter()
551 .zip(&self.scan)
552 .find(|(_, s)| **s == scan_number)
553 .map(|(m, _)| *m)?;
554
555 Some(TimsSpectrum {
556 frame_id: self.frame_id,
557 scan: scan_number,
558 retention_time: self.ims_frame.retention_time,
559 mobility,
560 ms_type: self.ms_type.clone(),
561 spectrum: IndexedMzSpectrum::new(tof, mz, intensity),
562 })
563 }
564}
565
566struct AggregateData {
567 intensity_sum: f64,
568 ion_mobility_sum: f64,
569 tof_sum: i64,
570 count: i32,
571}
572
573impl std::ops::Add for TimsFrame {
574 type Output = Self;
575 fn add(self, other: Self) -> TimsFrame {
576 let mut combined_map: BTreeMap<(i32, i64), AggregateData> = BTreeMap::new();
577
578 let quantize = |mz: f64| -> i64 {
579 (mz * 1_000_000.0).round() as i64
580 };
581
582 let add_to_map = |map: &mut BTreeMap<(i32, i64), AggregateData>, mz, ion_mobility, tof, scan, intensity| {
583 let key = (scan, quantize(mz));
584 let entry = map.entry(key).or_insert(AggregateData { intensity_sum: 0.0, ion_mobility_sum: 0.0, tof_sum: 0, count: 0 });
585 entry.intensity_sum += intensity;
586 entry.ion_mobility_sum += ion_mobility;
587 entry.tof_sum += tof as i64;
588 entry.count += 1;
589 };
590
591 for (mz, tof, ion_mobility, scan, intensity) in izip!(&self.ims_frame.mz, &self.tof, &self.ims_frame.mobility, &self.scan, &self.ims_frame.intensity) {
592 add_to_map(&mut combined_map, *mz, *ion_mobility, *tof, *scan, *intensity);
593 }
594
595 for (mz, tof, ion_mobility, scan, intensity) in izip!(&other.ims_frame.mz, &other.tof, &other.ims_frame.mobility, &other.scan, &other.ims_frame.intensity) {
596 add_to_map(&mut combined_map, *mz, *ion_mobility, *tof, *scan, *intensity);
597 }
598
599 let mut mz_combined = Vec::new();
600 let mut tof_combined = Vec::new();
601 let mut ion_mobility_combined = Vec::new();
602 let mut scan_combined = Vec::new();
603 let mut intensity_combined = Vec::new();
604
605 for ((scan, quantized_mz), data) in combined_map {
606 mz_combined.push(quantized_mz as f64 / 1_000_000.0);
607 tof_combined.push(data.tof_sum / data.count as i64);
608 ion_mobility_combined.push(data.ion_mobility_sum / data.count as f64);
609 scan_combined.push(scan);
610 intensity_combined.push(data.intensity_sum);
611 }
612
613 let frame = TimsFrame {
614 frame_id: self.frame_id,
615 ms_type: if self.ms_type == other.ms_type { self.ms_type.clone() } else { MsType::Unknown },
616 scan: scan_combined,
617 tof: tof_combined.iter().map(|&x| x as i32).collect(),
618 ims_frame: ImsFrame {
619 retention_time: self.ims_frame.retention_time,
620 mobility: ion_mobility_combined,
621 mz: mz_combined,
622 intensity: intensity_combined,
623 },
624 };
625
626 return frame;
627 }
628}
629
630impl fmt::Display for TimsFrame {
631 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
632
633 let (mz, i) = self.ims_frame.mz.iter()
634 .zip(&self.ims_frame.intensity)
635 .max_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal))
636 .unwrap();
637
638 write!(f, "TimsFrame(id: {}, type: {}, rt: {}, data points: {}, max by intensity: (mz: {}, intensity: {}))",
639 self.frame_id, self.ms_type, self.ims_frame.retention_time, self.scan.len(), format!("{:.3}", mz), i)
640 }
641}
642
643impl Vectorized<TimsFrameVectorized> for TimsFrame {
644 fn vectorized(&self, resolution: i32) -> TimsFrameVectorized {
645 let binned_frame = self.to_resolution(resolution);
646 let indices: Vec<i32> = binned_frame.ims_frame.mz.iter().map(|&mz| (mz * 10f64.powi(resolution)).round() as i32).collect();
648 return TimsFrameVectorized {
650 frame_id: self.frame_id,
651 ms_type: self.ms_type.clone(),
652 scan: binned_frame.scan,
653 tof: binned_frame.tof,
654 ims_frame: ImsFrameVectorized {
655 retention_time: binned_frame.ims_frame.retention_time,
656 mobility: binned_frame.ims_frame.mobility,
657 indices,
658 values: binned_frame.ims_frame.intensity,
659 resolution,
660 },
661 };
662 }
663}
664
665impl ToResolution for TimsFrame {
685 fn to_resolution(&self, resolution: i32) -> TimsFrame {
686 let factor = (10.0f64).powi(resolution);
687
688 let mut bin_map: BTreeMap<(i32, i32), (f64, f64, f64, i32)> = BTreeMap::new();
691
692 for i in 0..self.ims_frame.mz.len() {
693 let rounded_mz = (self.ims_frame.mz[i] * factor).round() as i32;
694 let scan_val = self.scan[i];
695 let intensity_val = self.ims_frame.intensity[i] as f64;
696 let tof_val = self.tof[i] as f64;
697 let mobility_val = self.ims_frame.mobility[i] as f64;
698
699 let entry = bin_map.entry((scan_val, rounded_mz)).or_insert((0.0, 0.0, 0.0, 0));
700 entry.0 += intensity_val;
701 entry.1 += tof_val;
702 entry.2 += mobility_val;
703 entry.3 += 1;
704 }
705
706 let mut new_mz = Vec::with_capacity(bin_map.len());
707 let mut new_scan = Vec::with_capacity(bin_map.len());
708 let mut new_intensity = Vec::with_capacity(bin_map.len());
709 let mut new_tof = Vec::with_capacity(bin_map.len());
710 let mut new_mobility = Vec::with_capacity(bin_map.len());
711
712 for ((scan, mz_bin), (intensity_sum, tof_sum, mobility_sum, count)) in bin_map {
713 new_mz.push(mz_bin as f64 / factor);
714 new_scan.push(scan);
715 new_intensity.push(intensity_sum);
716 new_tof.push((tof_sum / count as f64) as i32);
717 new_mobility.push(mobility_sum / count as f64);
718 }
719
720 TimsFrame {
721 frame_id: self.frame_id,
722 ms_type: self.ms_type.clone(),
723 scan: new_scan,
724 tof: new_tof,
725 ims_frame: ImsFrame {
726 retention_time: self.ims_frame.retention_time,
727 mobility: new_mobility,
728 mz: new_mz,
729 intensity: new_intensity,
730 },
731 }
732 }
733}
734
735#[derive(Clone)]
736pub struct TimsFrameVectorized {
737 pub frame_id: i32,
738 pub ms_type: MsType,
739 pub scan: Vec<i32>,
740 pub tof: Vec<i32>,
741 pub ims_frame: ImsFrameVectorized,
742}
743
744impl TimsFrameVectorized {
745 pub fn filter_ranged(&self, mz_min: f64, mz_max: f64, scan_min: i32, scan_max: i32, inv_mob_min: f64, inv_mob_max: f64, intensity_min: f64, intensity_max: f64) -> TimsFrameVectorized {
746 let mut scan_vec = Vec::new();
747 let mut mobility_vec = Vec::new();
748 let mut tof_vec = Vec::new();
749 let mut mz_vec = Vec::new();
750 let mut intensity_vec = Vec::new();
751 let mut indices_vec = Vec::new();
752
753 for (mz, intensity, scan, mobility, tof, index) in itertools::multizip((&self.ims_frame.values, &self.ims_frame.values, &self.scan, &self.ims_frame.mobility, &self.tof, &self.ims_frame.indices)) {
754 if mz >= &mz_min && mz <= &mz_max && scan >= &scan_min && scan <= &scan_max && mobility >= &inv_mob_min && mobility <= &inv_mob_max && intensity >= &intensity_min && intensity <= &intensity_max {
755 scan_vec.push(*scan);
756 mobility_vec.push(*mobility);
757 tof_vec.push(*tof);
758 mz_vec.push(*mz);
759 intensity_vec.push(*intensity);
760 indices_vec.push(*index);
761 }
762 }
763
764 TimsFrameVectorized {
765 frame_id: self.frame_id,
766 ms_type: self.ms_type.clone(),
767 scan: scan_vec,
768 tof: tof_vec,
769 ims_frame: ImsFrameVectorized {
770 retention_time: self.ims_frame.retention_time,
771 mobility: mobility_vec,
772 indices: indices_vec,
773 values: mz_vec,
774 resolution: self.ims_frame.resolution,
775 },
776 }
777 }
778}
779
780impl fmt::Display for TimsFrameVectorized {
781 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
782
783 let (mz, i) = self.ims_frame.values.iter()
784 .zip(&self.ims_frame.values)
785 .max_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal))
786 .unwrap();
787
788 write!(f, "TimsFrame(id: {}, type: {}, rt: {}, data points: {}, max by intensity: (mz: {}, intensity: {}))",
789 self.frame_id, self.ms_type, self.ims_frame.retention_time, self.scan.len(), format!("{:.3}", mz), i)
790 }
791}