mscore/timstof/
frame.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
use std::fmt;
use std::collections::BTreeMap;
use std::fmt::{Formatter};
use bincode::{Decode, Encode};
use itertools;
use itertools::izip;
use ordered_float::OrderedFloat;
use rand::Rng;
use serde::{Deserialize, Serialize};
use crate::timstof::spectrum::TimsSpectrum;
use crate::data::spectrum::{MsType, MzSpectrum, IndexedMzSpectrum, Vectorized, ToResolution};
use crate::simulation::annotation::{PeakAnnotation, TimsFrameAnnotated};
use crate::timstof::vec_utils::{filter_with_mask, find_sparse_local_maxima_mask};

#[derive(Clone)]
pub struct RawTimsFrame {
    pub frame_id: i32,
    pub retention_time: f64,
    pub ms_type: MsType,
    pub scan: Vec<u32>,
    pub tof: Vec<u32>,
    pub intensity: Vec<f64>,
}

impl RawTimsFrame {
    pub fn smooth(mut self, window: u32) -> Self {
        let mut smooth_intensities: Vec<f64> = self.intensity.clone();
        for (current_index, current_tof) in self.tof.iter().enumerate()
        {
            let current_intensity: f64 = self.intensity[current_index];
            for (_next_index, next_tof) in
                self.tof[current_index + 1..].iter().enumerate()
            {
                let next_index: usize = _next_index + current_index + 1;
                let next_intensity: f64 = self.intensity[next_index];
                if (next_tof - current_tof) <= window {
                    smooth_intensities[current_index] += next_intensity;
                    smooth_intensities[next_index] += current_intensity;
                } else {
                    break;
                }
            }
        }
        self.intensity = smooth_intensities;

        self
    }
    pub fn centroid(mut self, window: u32) -> Self {
        let local_maxima: Vec<bool> = find_sparse_local_maxima_mask(
            &self.tof,
            &self.intensity,
            window,
        );
        self.tof = filter_with_mask(&self.tof, &local_maxima);
        self.intensity = filter_with_mask(&self.intensity, &local_maxima);
        self.scan = filter_with_mask(&self.scan, &local_maxima);
        self
    }
}

#[derive(Clone, Debug, Default, Serialize, Deserialize, Encode, Decode)]
pub struct ImsFrame {
    pub retention_time: f64,
    pub mobility: Vec<f64>,
    pub mz: Vec<f64>,
    pub intensity: Vec<f64>,
}

impl ImsFrame {
    /// Creates a new `ImsFrame` instance.
    ///
    /// # Arguments
    ///
    /// * `retention_time` - The retention time in seconds.
    /// * `mobility` - A vector of inverse ion mobilities.
    /// * `mz` - A vector of m/z values.
    /// * `intensity` - A vector of intensity values.
    ///
    /// # Examples
    ///
    /// ```
    /// use mscore::timstof::frame::ImsFrame;
    ///
    /// let frame = ImsFrame::new(100.0, vec![0.1, 0.2], vec![100.5, 200.5], vec![50.0, 60.0]);
    /// ```
    pub fn new(retention_time: f64, mobility: Vec<f64>, mz: Vec<f64>, intensity: Vec<f64>) -> Self {
        ImsFrame { retention_time, mobility, mz, intensity }
    }
}

impl fmt::Display for ImsFrame {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        write!(f, "ImsFrame(rt: {}, data points: {})", self.retention_time, self.mobility.len())
    }
}

#[derive(Clone)]
pub struct ImsFrameVectorized {
    pub retention_time: f64,
    pub mobility: Vec<f64>,
    pub indices: Vec<i32>,
    pub values: Vec<f64>,
    pub resolution: i32,
}

#[derive(Clone, Debug, Serialize, Deserialize, Encode, Decode)]
pub struct TimsFrame {
    pub frame_id: i32,
    pub ms_type: MsType,
    pub scan: Vec<i32>,
    pub tof: Vec<i32>,
    pub ims_frame: ImsFrame,
}

impl Default for TimsFrame {
    fn default() -> Self {
        TimsFrame {
            frame_id: 0, // Replace with a suitable default value
            ms_type: MsType::Unknown,
            scan: Vec::new(),
            tof: Vec::new(),
            ims_frame: ImsFrame::default(), // Uses the default implementation for `ImsFrame`
        }
    }
}

impl TimsFrame {
    /// Creates a new `TimsFrame` instance.
    ///
    /// # Arguments
    ///
    /// * `frame_id` - index of frame in TDF raw file.
    /// * `ms_type` - The type of frame.
    /// * `retention_time` - The retention time in seconds.
    /// * `scan` - A vector of scan IDs.
    /// * `mobility` - A vector of inverse ion mobilities.
    /// * `tof` - A vector of time-of-flight values.
    /// * `mz` - A vector of m/z values.
    /// * `intensity` - A vector of intensity values.
    ///
    /// # Examples
    ///
    /// ```
    /// use mscore::data::spectrum::MsType;
    /// use mscore::timstof::frame::TimsFrame;
    /// use mscore::timstof::frame::ImsFrame;
    ///
    /// let frame = TimsFrame::new(1, MsType::Precursor, 100.0, vec![1, 2], vec![0.1, 0.2], vec![1000, 2000], vec![100.5, 200.5], vec![50.0, 60.0]);
    /// ```
    pub fn new(frame_id: i32, ms_type: MsType, retention_time: f64, scan: Vec<i32>, mobility: Vec<f64>, tof: Vec<i32>, mz: Vec<f64>, intensity: Vec<f64>) -> Self {
        TimsFrame { frame_id, ms_type, scan, tof, ims_frame: ImsFrame { retention_time, mobility, mz, intensity } }
    }

    ///
    /// Convert a given TimsFrame to an ImsFrame.
    ///
    /// # Examples
    ///
    /// ```
    /// use mscore::data::spectrum::MsType;
    /// use mscore::timstof::frame::TimsFrame;
    ///
    /// let frame = TimsFrame::new(1, MsType::Precursor, 100.0, vec![1, 2], vec![0.1, 0.2], vec![1000, 2000], vec![100.5, 200.5], vec![50.0, 60.0]);
    /// let ims_spectrum = frame.get_ims_frame();
    /// ```
    pub fn get_ims_frame(&self) -> ImsFrame { self.ims_frame.clone() }

    ///
    /// Convert a given TimsFrame to a vector of TimsSpectrum.
    ///
    /// # Examples
    ///
    /// ```
    /// use mscore::data::spectrum::MsType;
    /// use mscore::timstof::frame::TimsFrame;
    ///
    /// let frame = TimsFrame::new(1, MsType::Precursor, 100.0, vec![1, 2], vec![0.1, 0.2], vec![1000, 2000], vec![100.5, 200.5], vec![50.0, 60.0]);
    /// let tims_spectra = frame.to_tims_spectra();
    /// ```
    pub fn to_tims_spectra(&self) -> Vec<TimsSpectrum> {
        // use a sorted map where scan is used as key
        let mut spectra = BTreeMap::<i32, (f64, Vec<i32>, Vec<f64>, Vec<f64>)>::new();

        // all indices and the intensity values are sorted by scan and stored in the map as a tuple (mobility, tof, mz, intensity)
        for (scan, mobility, tof, mz, intensity) in itertools::multizip((
            &self.scan,
            &self.ims_frame.mobility,
            &self.tof,
            &self.ims_frame.mz,
            &self.ims_frame.intensity)) {
            let entry = spectra.entry(*scan).or_insert_with(|| (*mobility, Vec::new(), Vec::new(), Vec::new()));
            entry.1.push(*tof);
            entry.2.push(*mz);
            entry.3.push(*intensity);
        }

        // convert the map to a vector of TimsSpectrum
        let mut tims_spectra: Vec<TimsSpectrum> = Vec::new();

        for (scan, (mobility, tof, mz, intensity)) in spectra {
            let spectrum = IndexedMzSpectrum::new(tof, mz, intensity);
            tims_spectra.push(TimsSpectrum::new(self.frame_id, scan, self.ims_frame.retention_time, mobility, self.ms_type.clone(), spectrum));
        }

        tims_spectra
    }

    ///
    /// Filter a given TimsFrame by m/z, scan, and intensity.
    ///
    /// # Arguments
    ///
    /// * `mz_min` - The minimum m/z value.
    /// * `mz_max` - The maximum m/z value.
    /// * `scan_min` - The minimum scan value.
    /// * `scan_max` - The maximum scan value.
    /// *
    /// * `intensity_min` - The minimum intensity value.
    /// * `intensity_max` - The maximum intensity value.
    ///
    /// # Examples
    ///
    /// ```
    /// use mscore::data::spectrum::MsType;
    /// use mscore::timstof::frame::TimsFrame;
    ///
    /// let frame = TimsFrame::new(1, MsType::Precursor, 100.0, vec![1, 2], vec![0.1, 0.2], vec![1000, 2000], vec![100.5, 200.5], vec![50.0, 60.0]);
    /// let filtered_frame = frame.filter_ranged(100.0, 200.0, 1, 2, 0.0, 1.6, 50.0, 60.0);
    /// ```
    pub fn filter_ranged(&self, mz_min: f64, mz_max: f64, scan_min: i32, scan_max: i32, inv_mob_min: f64, inv_mob_max: f64, intensity_min: f64, intensity_max: f64) -> TimsFrame {

        let mut scan_vec = Vec::new();
        let mut mobility_vec = Vec::new();
        let mut tof_vec = Vec::new();
        let mut mz_vec = Vec::new();
        let mut intensity_vec = Vec::new();

        for (mz, intensity, scan, mobility, tof) in itertools::multizip((&self.ims_frame.mz, &self.ims_frame.intensity, &self.scan, &self.ims_frame.mobility, &self.tof)) {
            if mz >= &mz_min && mz <= &mz_max && scan >= &scan_min && scan <= &scan_max && mobility >= &inv_mob_min && mobility <= &inv_mob_max && intensity >= &intensity_min && intensity <= &intensity_max {
                scan_vec.push(*scan);
                mobility_vec.push(*mobility);
                tof_vec.push(*tof);
                mz_vec.push(*mz);
                intensity_vec.push(*intensity);
            }
        }

        TimsFrame::new(self.frame_id, self.ms_type.clone(), self.ims_frame.retention_time, scan_vec, mobility_vec, tof_vec, mz_vec, intensity_vec)
    }

    pub fn top_n(&self, n: usize) -> TimsFrame {
        let mut indices: Vec<usize> = (0..self.ims_frame.intensity.len()).collect();
        indices.sort_by(|a, b| self.ims_frame.intensity[*b].partial_cmp(&self.ims_frame.intensity[*a]).unwrap());
        indices.truncate(n);

        let scan = indices.iter().map(|&i| self.scan[i]).collect();
        let mobility = indices.iter().map(|&i| self.ims_frame.mobility[i]).collect();
        let tof = indices.iter().map(|&i| self.tof[i]).collect();
        let mz = indices.iter().map(|&i| self.ims_frame.mz[i]).collect();
        let intensity = indices.iter().map(|&i| self.ims_frame.intensity[i]).collect();

        TimsFrame::new(self.frame_id, self.ms_type.clone(), self.ims_frame.retention_time, scan, mobility, tof, mz, intensity)
    }

    pub fn to_windows_indexed(&self, window_length: f64, overlapping: bool, min_peaks: usize, min_intensity: f64) -> (Vec<i32>, Vec<i32>, Vec<TimsSpectrum>) {
        // split by scan (ion mobility)
        let spectra = self.to_tims_spectra();

        let windows: Vec<_> = spectra.iter().map(|spectrum|
            spectrum.to_windows(window_length, overlapping, min_peaks, min_intensity))
            .collect();

        let mut scan_indices = Vec::new();

        for tree in windows.iter() {
            for (_, window) in tree {
                scan_indices.push(window.scan)
            }
        }

        let mut spectra = Vec::new();
        let mut window_indices = Vec::new();

        for window in windows {
            for (i, spectrum) in window {
                spectra.push(spectrum);
                window_indices.push(i);
            }
        }

        (scan_indices, window_indices, spectra)
    }

    pub fn to_windows(&self, window_length: f64, overlapping: bool, min_peaks: usize, min_intensity: f64) -> Vec<TimsSpectrum> {
        let (_, _, widows) = self.to_windows_indexed(window_length, overlapping, min_peaks, min_intensity);
        widows
    }

    pub fn from_windows(windows: Vec<TimsSpectrum>) -> TimsFrame {

        let first_window = windows.first().unwrap();

        let mut scan = Vec::new();
        let mut tof = Vec::new();
        let mut mzs = Vec::new();
        let mut intensity = Vec::new();
        let mut mobility = Vec::new();

        for window in windows.iter() {
            for (i, mz) in window.spectrum.mz_spectrum.mz.iter().enumerate() {
                scan.push(window.scan);
                mobility.push(window.mobility);
                tof.push(window.spectrum.index[i]);
                mzs.push(*mz);
                intensity.push(window.spectrum.mz_spectrum.intensity[i]);
            }
        }

        TimsFrame::new(first_window.frame_id, first_window.ms_type.clone(), first_window.retention_time, scan, mobility, tof, mzs, intensity)
    }

    pub fn from_tims_spectra(spectra: Vec<TimsSpectrum>) -> TimsFrame {

        // Helper to quantize mz to an integer key
        let quantize = |mz: f64| -> i64 {
            (mz * 1_000_000.0).round() as i64
        };

        // Step 1: Get frame coordinates
        let first_spec = spectra.first();
        let frame_id = match first_spec {
            Some(first_spec) => first_spec.frame_id,
            _ => 1
        };
        
        let ms_type = match first_spec {
            Some(first_spec) => first_spec.ms_type.clone(),
            _ => MsType::Unknown,
        };
        
        let retention_time = match first_spec { 
            Some(first_spec) => first_spec.retention_time,
            _ => 0.0
        };

        let mut frame_map: BTreeMap<i32, (f64, BTreeMap<i64, (i32, f64)>)> = BTreeMap::new();
        let mut capacity_count = 0;

        // Step 2: Group by scan and unroll all spectra to a single vector per scan
        for spectrum in &spectra {
            let inv_mobility = spectrum.mobility;
            let entry = frame_map.entry(spectrum.scan).or_insert_with(|| (inv_mobility, BTreeMap::new()));
            for (i, mz) in spectrum.spectrum.mz_spectrum.mz.iter().enumerate() {
                let tof = spectrum.spectrum.index[i];
                let intensity = spectrum.spectrum.mz_spectrum.intensity[i];
                entry.1.entry(quantize(*mz)).and_modify(|e| *e = (tof, e.1 + intensity)).or_insert((tof, intensity));
                capacity_count += 1;
            }
        }

        // Step 3: Unroll the map to vectors
        let mut scan = Vec::with_capacity(capacity_count);
        let mut mobility = Vec::with_capacity(capacity_count);
        let mut tof = Vec::with_capacity(capacity_count);
        let mut mzs = Vec::with_capacity(capacity_count);
        let mut intensity = Vec::with_capacity(capacity_count);

        for (scan_val, (mobility_val, mz_map)) in frame_map {
            for (mz_val, (tof_val, intensity_val)) in mz_map {
                scan.push(scan_val);
                mobility.push(mobility_val);
                tof.push(tof_val);
                mzs.push(mz_val as f64 / 1_000_000.0);
                intensity.push(intensity_val);
            }
        }

        TimsFrame::new(frame_id, ms_type, retention_time, scan, mobility, tof, mzs, intensity)
    }

    pub fn to_dense_windows(&self, window_length: f64, overlapping: bool, min_peaks: usize, min_intensity: f64, resolution: i32) -> (Vec<f64>, Vec<i32>, Vec<i32>, usize, usize) {
        let factor = (10.0f64).powi(resolution);
        let num_colums = ((window_length * factor).round() + 1.0) as usize;

        let (scans, window_indices, spectra) = self.to_windows_indexed(window_length, overlapping, min_peaks, min_intensity);
        let vectorized_spectra = spectra.iter().map(|spectrum| spectrum.vectorized(resolution)).collect::<Vec<_>>();

        let mut flat_matrix: Vec<f64> = vec![0.0; spectra.len() * num_colums];

        for (row_index, (window_index, spectrum)) in itertools::multizip((&window_indices, vectorized_spectra)).enumerate() {

            let vectorized_window_index = match *window_index >= 0 {
                true => (*window_index as f64 * window_length * factor).round() as i32,
                false => (((-1.0 * (*window_index as f64)) * window_length - (0.5 * window_length)) * factor).round() as i32,
            };

            for (i, index) in spectrum.vector.mz_vector.indices.iter().enumerate() {
                let zero_based_index = (index - vectorized_window_index) as usize;
                let current_index = row_index * num_colums + zero_based_index;
                flat_matrix[current_index] = spectrum.vector.mz_vector.values[i];
            }

        }
        (flat_matrix, scans, window_indices, spectra.len(), num_colums)
    }


    pub fn to_indexed_mz_spectrum(&self) -> IndexedMzSpectrum {
        let mut grouped_data: BTreeMap<i32, Vec<(f64, f64)>> = BTreeMap::new();

        // Group by 'tof' with 'mz' and 'intensity'
        for (&tof, (&mz, &intensity)) in self.tof.iter().zip(self.ims_frame.mz.iter().zip(self.ims_frame.intensity.iter())) {
            grouped_data.entry(tof).or_insert_with(Vec::new).push((mz, intensity));
        }

        let mut index = Vec::new();
        let mut mz = Vec::new();
        let mut intensity = Vec::new();

        for (&tof_val, values) in &grouped_data {
            let sum_intensity: f64 = values.iter().map(|&(_, i)| i).sum();
            let avg_mz: f64 = values.iter().map(|&(m, _)| m).sum::<f64>() / values.len() as f64;

            index.push(tof_val);
            mz.push(avg_mz);
            intensity.push(sum_intensity);
        }

        IndexedMzSpectrum {
            index,
            mz_spectrum: MzSpectrum { mz, intensity },
        }
    }

    pub fn generate_random_sample(&self, take_probability: f64) -> TimsFrame {
        assert!(take_probability >= 0.0 && take_probability <= 1.0);

        let mut rng = rand::thread_rng();
        let mut scan = Vec::new();
        let mut mobility = Vec::new();
        let mut tof = Vec::new();
        let mut mz = Vec::new();
        let mut intensity = Vec::new();

        for (s, m, t, mz_val, i) in itertools::multizip((&self.scan, &self.ims_frame.mobility, &self.tof, &self.ims_frame.mz, &self.ims_frame.intensity)) {
            if rng.gen::<f64>() <= take_probability {
                scan.push(*s);
                mobility.push(*m);
                tof.push(*t);
                mz.push(*mz_val);
                intensity.push(*i);
            }
        }

        TimsFrame::new(self.frame_id, self.ms_type.clone(), self.ims_frame.retention_time, scan, mobility, tof, mz, intensity)
    }

    pub fn to_noise_annotated_tims_frame(&self) -> TimsFrameAnnotated {
        let mut annotations = Vec::with_capacity(self.ims_frame.mz.len());
        let tof_values = self.tof.clone();
        let mz_values = self.ims_frame.mz.clone();
        let scan_values = self.scan.clone();
        let inv_mobility_values = self.ims_frame.mobility.clone();
        let intensity_values = self.ims_frame.intensity.clone();

        for intensity in &intensity_values {
            annotations.push(PeakAnnotation::new_random_noise(*intensity));
        }

        TimsFrameAnnotated::new(
            self.frame_id,
            self.ims_frame.retention_time,
            self.ms_type.clone(),
            tof_values.iter().map(|&x| x as u32).collect(),
            mz_values,
            scan_values.iter().map(|&x| x as u32).collect(),
            inv_mobility_values,
            intensity_values,
            annotations,
        )
    }

    pub fn get_inverse_mobility_along_scan_marginal(&self) -> f64 {
        let mut marginal_map: BTreeMap<i32, (f64, f64)> = BTreeMap::new();
        // go over all data points of scan, inv_mob and intensity
        for (scan, inv_mob, intensity) in izip!(&self.scan, &self.ims_frame.mobility, &self.ims_frame.intensity) {
            // create a key for the map
            let key = *scan;
            // get the entry from the map or insert a new one
            let entry = marginal_map.entry(key).or_insert((0.0, 0.0));
            // update the entry with the current intensity adding it to the existing intensity
            entry.0 += *intensity;
            // update the entry with the current inverse mobility, overwriting the existing value
            entry.1 = *inv_mob;
        }

        // get the inverse mobility with the highest intensity
        let (_, max_inv_mob) = marginal_map.iter().max_by(|a, b| a.1.0.partial_cmp(&b.1.0).unwrap_or(std::cmp::Ordering::Equal)).unwrap_or((&0, &(0.0, 0.0))).1;

        *max_inv_mob
    }

    /// Calculate the weighted mean and variance of `inv_mob` values based on their intensities.
    pub fn get_mobility_mean_and_variance(&self) -> (f64, f64) {
        let mut mobility_map: BTreeMap<OrderedFloat<f64>, f64> = BTreeMap::new();

        // Aggregate intensity values for each `inv_mob`
        for (inv_mob, intensity) in izip!(&self.ims_frame.mobility, &self.ims_frame.intensity) {
            let entry = mobility_map.entry(OrderedFloat(*inv_mob)).or_insert(0.0);
            *entry += *intensity;
        }

        // Calculate weighted mean
        let mut total_weight = 0.0;
        let mut weighted_sum = 0.0;
        for (&inv_mob, &intensity) in &mobility_map {
            total_weight += intensity;
            weighted_sum += inv_mob.into_inner() * intensity;
        }
        let mean = weighted_sum / total_weight;

        // Calculate weighted variance
        let mut weighted_squared_diff_sum = 0.0;
        for (&inv_mob, &intensity) in &mobility_map {
            let diff = inv_mob.into_inner() - mean;
            weighted_squared_diff_sum += intensity * diff * diff;
        }
        let variance = weighted_squared_diff_sum / total_weight;

        (mean, variance)
    }
}

struct AggregateData {
    intensity_sum: f64,
    ion_mobility_sum: f64,
    tof_sum: i64,
    count: i32,
}

impl std::ops::Add for TimsFrame {
    type Output = Self;
    fn add(self, other: Self) -> TimsFrame {
        let mut combined_map: BTreeMap<(i32, i64), AggregateData> = BTreeMap::new();

        let quantize = |mz: f64| -> i64 {
            (mz * 1_000_000.0).round() as i64
        };

        let add_to_map = |map: &mut BTreeMap<(i32, i64), AggregateData>, mz, ion_mobility, tof, scan, intensity| {
            let key = (scan, quantize(mz));
            let entry = map.entry(key).or_insert(AggregateData { intensity_sum: 0.0, ion_mobility_sum: 0.0, tof_sum: 0, count: 0 });
            entry.intensity_sum += intensity;
            entry.ion_mobility_sum += ion_mobility;
            entry.tof_sum += tof as i64;
            entry.count += 1;
        };

        for (mz, tof, ion_mobility, scan, intensity) in izip!(&self.ims_frame.mz, &self.tof, &self.ims_frame.mobility, &self.scan, &self.ims_frame.intensity) {
            add_to_map(&mut combined_map, *mz, *ion_mobility, *tof, *scan, *intensity);
        }

        for (mz, tof, ion_mobility, scan, intensity) in izip!(&other.ims_frame.mz, &other.tof, &other.ims_frame.mobility, &other.scan, &other.ims_frame.intensity) {
            add_to_map(&mut combined_map, *mz, *ion_mobility, *tof, *scan, *intensity);
        }

        let mut mz_combined = Vec::new();
        let mut tof_combined = Vec::new();
        let mut ion_mobility_combined = Vec::new();
        let mut scan_combined = Vec::new();
        let mut intensity_combined = Vec::new();

        for ((scan, quantized_mz), data) in combined_map {
            mz_combined.push(quantized_mz as f64 / 1_000_000.0);
            tof_combined.push(data.tof_sum / data.count as i64);
            ion_mobility_combined.push(data.ion_mobility_sum / data.count as f64);
            scan_combined.push(scan);
            intensity_combined.push(data.intensity_sum);
        }

        let frame = TimsFrame {
            frame_id: self.frame_id,
            ms_type: if self.ms_type == other.ms_type { self.ms_type.clone() } else { MsType::Unknown },
            scan: scan_combined,
            tof: tof_combined.iter().map(|&x| x as i32).collect(),
            ims_frame: ImsFrame {
                retention_time: self.ims_frame.retention_time,
                mobility: ion_mobility_combined,
                mz: mz_combined,
                intensity: intensity_combined,
            },
        };

        return frame;
    }
}

impl fmt::Display for TimsFrame {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {

        let (mz, i) = self.ims_frame.mz.iter()
            .zip(&self.ims_frame.intensity)
            .max_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal))
            .unwrap();

        write!(f, "TimsFrame(id: {}, type: {}, rt: {}, data points: {}, max by intensity: (mz: {}, intensity: {}))",
               self.frame_id, self.ms_type, self.ims_frame.retention_time, self.scan.len(), format!("{:.3}", mz), i)
    }
}

impl Vectorized<TimsFrameVectorized> for TimsFrame {
    fn vectorized(&self, resolution: i32) -> TimsFrameVectorized {
        let binned_frame = self.to_resolution(resolution);
        // Translate the m/z values into integer indices
        let indices: Vec<i32> = binned_frame.ims_frame.mz.iter().map(|&mz| (mz * 10f64.powi(resolution)).round() as i32).collect();
        // Create a vector of values
        return TimsFrameVectorized {
            frame_id: self.frame_id,
            ms_type: self.ms_type.clone(),
            scan: binned_frame.scan,
            tof: binned_frame.tof,
            ims_frame: ImsFrameVectorized {
                retention_time: binned_frame.ims_frame.retention_time,
                mobility: binned_frame.ims_frame.mobility,
                indices,
                values: binned_frame.ims_frame.intensity,
                resolution,
            },
        };
    }
}

///
/// Convert a given TimsFrame to a vector of TimsSpectrum.
///
/// # Arguments
///
/// * `resolution` - The resolution to which the m/z values should be rounded.
///
/// # Examples
///
/// ```
/// use mscore::data::spectrum::MsType;
/// use mscore::timstof::frame::TimsFrame;
/// use mscore::timstof::spectrum::TimsSpectrum;
/// use mscore::data::spectrum::IndexedMzSpectrum;
/// use mscore::data::spectrum::ToResolution;
///
/// let frame = TimsFrame::new(1, MsType::Precursor, 100.0, vec![1, 2], vec![0.1, 0.2], vec![1000, 2000], vec![100.5, 200.5], vec![50.0, 60.0]);
/// let low_res_frame = frame.to_resolution(1);
/// ```
impl ToResolution for TimsFrame {
    fn to_resolution(&self, resolution: i32) -> TimsFrame {
        let factor = (10.0f64).powi(resolution);

        // Using a tuple of (scan, mz_bin) as a key
        // Value will store sum of intensities, sum of tofs, sum of mobilities and their count for averaging
        let mut bin_map: BTreeMap<(i32, i32), (f64, f64, f64, i32)> = BTreeMap::new();

        for i in 0..self.ims_frame.mz.len() {
            let rounded_mz = (self.ims_frame.mz[i] * factor).round() as i32;
            let scan_val = self.scan[i];
            let intensity_val = self.ims_frame.intensity[i] as f64;
            let tof_val = self.tof[i] as f64;
            let mobility_val = self.ims_frame.mobility[i] as f64;

            let entry = bin_map.entry((scan_val, rounded_mz)).or_insert((0.0, 0.0, 0.0, 0));
            entry.0 += intensity_val;
            entry.1 += tof_val;
            entry.2 += mobility_val;
            entry.3 += 1;
        }

        let mut new_mz = Vec::with_capacity(bin_map.len());
        let mut new_scan = Vec::with_capacity(bin_map.len());
        let mut new_intensity = Vec::with_capacity(bin_map.len());
        let mut new_tof = Vec::with_capacity(bin_map.len());
        let mut new_mobility = Vec::with_capacity(bin_map.len());

        for ((scan, mz_bin), (intensity_sum, tof_sum, mobility_sum, count)) in bin_map {
            new_mz.push(mz_bin as f64 / factor);
            new_scan.push(scan);
            new_intensity.push(intensity_sum);
            new_tof.push((tof_sum / count as f64) as i32);
            new_mobility.push(mobility_sum / count as f64);
        }

        TimsFrame {
            frame_id: self.frame_id,
            ms_type: self.ms_type.clone(),
            scan: new_scan,
            tof: new_tof,
            ims_frame: ImsFrame {
                retention_time: self.ims_frame.retention_time,
                mobility: new_mobility,
                mz: new_mz,
                intensity: new_intensity,
            },
        }
    }
}

#[derive(Clone)]
pub struct TimsFrameVectorized {
    pub frame_id: i32,
    pub ms_type: MsType,
    pub scan: Vec<i32>,
    pub tof: Vec<i32>,
    pub ims_frame: ImsFrameVectorized,
}

impl TimsFrameVectorized {
    pub fn filter_ranged(&self, mz_min: f64, mz_max: f64, scan_min: i32, scan_max: i32, inv_mob_min: f64, inv_mob_max: f64, intensity_min: f64, intensity_max: f64) -> TimsFrameVectorized {
        let mut scan_vec = Vec::new();
        let mut mobility_vec = Vec::new();
        let mut tof_vec = Vec::new();
        let mut mz_vec = Vec::new();
        let mut intensity_vec = Vec::new();
        let mut indices_vec = Vec::new();

        for (mz, intensity, scan, mobility, tof, index) in itertools::multizip((&self.ims_frame.values, &self.ims_frame.values, &self.scan, &self.ims_frame.mobility, &self.tof, &self.ims_frame.indices)) {
            if mz >= &mz_min && mz <= &mz_max && scan >= &scan_min && scan <= &scan_max && mobility >= &inv_mob_min && mobility <= &inv_mob_max && intensity >= &intensity_min && intensity <= &intensity_max {
                scan_vec.push(*scan);
                mobility_vec.push(*mobility);
                tof_vec.push(*tof);
                mz_vec.push(*mz);
                intensity_vec.push(*intensity);
                indices_vec.push(*index);
            }
        }

        TimsFrameVectorized {
            frame_id: self.frame_id,
            ms_type: self.ms_type.clone(),
            scan: scan_vec,
            tof: tof_vec,
            ims_frame: ImsFrameVectorized {
                retention_time: self.ims_frame.retention_time,
                mobility: mobility_vec,
                indices: indices_vec,
                values: mz_vec,
                resolution: self.ims_frame.resolution,
            },
        }
    }
}

impl fmt::Display for TimsFrameVectorized {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {

        let (mz, i) = self.ims_frame.values.iter()
            .zip(&self.ims_frame.values)
            .max_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal))
            .unwrap();

        write!(f, "TimsFrame(id: {}, type: {}, rt: {}, data points: {}, max by intensity: (mz: {}, intensity: {}))",
               self.frame_id, self.ms_type, self.ims_frame.retention_time, self.scan.len(), format!("{:.3}", mz), i)
    }
}